python数据库操作常用功能使用详解(创建表/插入数据/获取数据)
实例1、取得MYSQL版本
# -*- coding: UTF-8 -*-
#安装MYSQL DB for python
import MySQLdb as mdb
con = None
try:
#连接mysql的方法:connect('ip','user','password','dbname')
con = mdb.connect('localhost', 'root',
'root', 'test');
#所有的查询,都在连接con的一个模块cursor上面运行的
cur = con.cursor()
#执行一个查询
cur.execute("SELECT VERSION()")
#取得上个查询的结果,是单个结果
data = cur.fetchone()
print "Database version : %s " % data
finally:
if con:
#无论如何,连接记得关闭
con.close()
执行结果:
Database version : 5.5.25
实例2、创建一个表并且插入数据
# -*- coding: UTF-8 -*-
import MySQLdb as mdb
import sys
#将con设定为全局连接
con = mdb.connect('localhost', 'root', 'root', 'test');
with con:
#获取连接的cursor,只有获取了cursor,我们才能进行各种操作
cur = con.cursor()
#创建一个数据表 writers(id,name)
cur.execute("CREATE TABLE IF NOT EXISTS \
Writers(Id INT PRIMARY KEY AUTO_INCREMENT, Name VARCHAR(25))")
#以下插入了5条数据
cur.execute("INSERT INTO Writers(Name) VALUES('Jack London')")
cur.execute("INSERT INTO Writers(Name) VALUES('Honore de Balzac')")
cur.execute("INSERT INTO Writers(Name) VALUES('Lion Feuchtwanger')")
cur.execute("INSERT INTO Writers(Name) VALUES('Emile Zola')")
cur.execute("INSERT INTO Writers(Name) VALUES('Truman Capote')")
实例3、python使用slect获取mysql的数据并遍历
# -*- coding: UTF-8 -*-
import MySQLdb as mdb
import sys
#连接mysql,获取连接的对象
con = mdb.connect('localhost', 'root', 'root', 'test');
with con:
#仍然是,第一步要获取连接的cursor对象,用于执行查询
cur = con.cursor()
#类似于其他语言的query函数,execute是python中的执行查询函数
cur.execute("SELECT * FROM Writers")
#使用fetchall函数,将结果集(多维元组)存入rows里面
rows = cur.fetchall()
#依次遍历结果集,发现每个元素,就是表中的一条记录,用一个元组来显示
for row in rows:
print row
执行结果:
(1L, ‘Jack London')
(2L, ‘Honore de Balzac')
(3L, ‘Lion Feuchtwanger')
(4L, ‘Emile Zola')
(5L, ‘Truman Capote')
实例4、使用字典cursor取得结果集(可以使用表字段名字访问值)
# -*- coding: UTF-8 -*-
# 来源:疯狂的蚂蚁的博客www.server110.com总结整理
import MySQLdb as mdb
import sys
#获得mysql查询的链接对象
con = mdb.connect('localhost', 'root', 'root', 'test')
with con:
#获取连接上的字典cursor,注意获取的方法,
#每一个cursor其实都是cursor的子类
cur = con.cursor(mdb.cursors.DictCursor)
#执行语句不变
cur.execute("SELECT * FROM Writers")
#获取数据方法不变
rows = cur.fetchall()
#遍历数据也不变(比上一个更直接一点)
for row in rows:
#这里,可以使用键值对的方法,由键名字来获取数据
print "%s %s" % (row["Id"], row["Name"])
实例5、获取单个表的字段名和信息的方法
# -*- coding: UTF-8 -*-
# 来源:疯狂的蚂蚁的博客www.server110.com总结整理
import MySQLdb as mdb
import sys
#获取数据库的链接对象
con = mdb.connect('localhost', 'root', 'root', 'test')
with con:
#获取普通的查询cursor
cur = con.cursor()
cur.execute("SELECT * FROM Writers")
rows = cur.fetchall()
#获取连接对象的描述信息
desc = cur.description
print 'cur.description:',desc
#打印表头,就是字段名字
print "%s %3s" % (desc[0][0], desc[1][0])
for row in rows:
#打印结果
print "%2s %3s" % row
运行结果: cur.description: ((‘Id', 3, 1, 11, 11, 0, 0), (‘Name', 253, 17, 25, 25, 0, 1))
Id Name
1 Jack London
2 Honore de Balzac
3 Lion Feuchtwanger
4 Emile Zola
5 Truman Capote
实例6、使用Prepared statements执行查询(更安全方便)
# -*- coding: UTF-8 -*-
# 来源:疯狂的蚂蚁的博客www.server110.com总结整理
import MySQLdb as mdb
import sys
con = mdb.connect('localhost', 'root', 'root', 'test')
with con:
cur = con.cursor()
#我们看到,这里可以通过写一个可以组装的sql语句来进行
cur.execute("UPDATE Writers SET Name = %s WHERE Id = %s",
("Guy de Maupasant", "4"))
#使用cur.rowcount获取影响了多少行
print "Number of rows updated: %d" % cur.rowcount
结果:
Number of rows updated: 1

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

PDF 文件因其跨平台兼容性而广受欢迎,内容和布局在不同操作系统、阅读设备和软件上保持一致。然而,与 Python 处理纯文本文件不同,PDF 文件是二进制文件,结构更复杂,包含字体、颜色和图像等元素。 幸运的是,借助 Python 的外部模块,处理 PDF 文件并非难事。本文将使用 PyPDF2 模块演示如何打开 PDF 文件、打印页面和提取文本。关于 PDF 文件的创建和编辑,请参考我的另一篇教程。 准备工作 核心在于使用外部模块 PyPDF2。首先,使用 pip 安装它: pip 是 P

本教程演示了如何利用Redis缓存以提高Python应用程序的性能,特别是在Django框架内。 我们将介绍REDIS安装,Django配置和性能比较,以突出显示BENE

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

本教程演示了在Python 3中创建自定义管道数据结构,利用类和操作员超载以增强功能。 管道的灵活性在于它能够将一系列函数应用于数据集的能力,GE

Python是数据科学和处理的最爱,为高性能计算提供了丰富的生态系统。但是,Python中的并行编程提出了独特的挑战。本教程探讨了这些挑战,重点是全球解释
