首页 后端开发 Python教程 Python的Django框架中消息通知的计数器实现教程

Python的Django框架中消息通知的计数器实现教程

Jun 16, 2016 am 08:47 AM
django python 计数器

故事的开始:.count()
假设你有一个Notification Model类,保存的主要是所有的站内通知:

class Notification(models.Model):
  """一个简化过的Notification类,拥有三个字段:

  - `user_id`: 消息所有人的用户ID
  - `has_readed`: 表示消息是否已读
  """

  user_id = models.IntegerField(db_index=True)
  has_readed = models.BooleanField(default=False)

登录后复制

理所当然的,刚开始你会通过这样的查询来获取某个用户的未读消息数:

# 获取ID为3074的用户的未读消息数
Notification.objects.filter(user_id=3074, has_readed=False).count()
登录后复制

当你的Notification表比较小的时候,这样的方式没有任何的问题,但是慢慢的,随着业务量 的扩大。消息表里面有了 上亿条数据 。很多懒惰的用户的未读消息数都到了上千条。

这时候,你就需要实现一个计数器,让这个计数器来统计每个用户的未读消息数,这样 比起之前的 count() ,我们只需要执行一条简单的主键查询(或者更优)就可以拿到实时的未读消息数了。

更优的方案:建立计数器
首先,让我们得建立一个新表来存储每个用户的未读消息数。

class UserNotificationsCount(models.Model):
  """这个Model保存着每一个用户的未读消息数目"""

  user_id = models.IntegerField(primary_key=True)
  unread_count = models.IntegerField(default=0)

  def __str__(self):
    return '<UserNotificationsCount %s: %s>' % (self.user_id, self.unread_count)

登录后复制

我们为每一个注册用户提供了一条对应的 UserNotificationsCount 记录来保存他的未读消息数。 每次获取他的未读消息数的时候,只需要 UserNotificationsCount.objects.get(pk=user_id).unread_count 就可以了。

接下来,问题的重点来了,我们如何知道什么时候应该更新我们的计数器?Django在这方面提供了什么捷径吗?

挑战:实时更新你的计数器

为了让我们的计数器正常的工作,我们必须实时的更新它,这包括:

  • 当有新的未读消息过来的时候,为计数器 +1
  • 当消息被异常删除时,如果关联的消息为未读,为计数器 -1
  • 当阅读完一个新消息的时候,为计数器 -1

让我们一个一个来解决这些情况。

在抛出解决方案之前,我们需要先介绍Django中的一个功能: Signals ,Signals是django提供的一个事件通知机制,它可以让你在监听某些自定义或者 预设的事件,当这些事件发生的时候,调用实现定义好的方法。

比如 django.db.models.signals.pre_save & django.db.models.signals.post_save 表示的是 某个Model调用save方法之前和之后会触发的事件,它和Database提供的触发器在功能上有一点相似。

关于Signals更多的介绍可以参考官方文档,下面让我们来看看Signals能给我们的计数器带来什么好处。

1. 当有新的消息过来的时候,为计数器 +1

这个情况应该是最好处理的,使用Django的Signals,只需要短短几行代码,我们便可以实现这种 情况下的计数器更新:

from django.db.models.signals import post_save, post_delete

def incr_notifications_counter(sender, instance, created, **kwargs):
  # 只有当这个instance是新创建,而且has_readed是默认的false才更新
  if not (created and not instance.has_readed):
    return

  # 调用 update_unread_count 方法来更新计数器 +1
  NotificationController(instance.user_id).update_unread_count(1)

# 监听Notification Model的post_save信号
post_save.connect(incr_notifications_counter, sender=Notification)

登录后复制

这样,每当你使用 Notification.create 或者 .save() 之类的方法创建新通知 时,我们的 NotificationController 便会得到通知,为计数器 +1。

但是请注意,因为我们的计数器是基于Django的signals,如果你的代码里面有地方 在使用原始sql,没有通过Django ORM方法来添加新通知的话,我们的计数器是不会得到 通知的,所以,最好规范所有的新通知建立方式,比如使用同一个API。

2. 当消息被异常删除时,如果关联的消息为未读,为计数器 -1

有了第一个的经验,这种情况处理起来也比较简单,只需要监控Notification的post_delete 信号就可以了,下面是一段实例代码:

def decr_notifications_counter(sender, instance, **kwargs):
  # 当删除的消息还没有被读过时,计数器 -1
  if not instance.has_readed:
    NotificationController(instance.user_id).update_unread_count(-1)

post_delete.connect(decr_notifications_counter, sender=Notification)
登录后复制


至此,Notification的删除事件也能正常的更新我们的计数器了。

3. 当阅读一个新消息的时候,为计数器 -1

接下来,当用户阅读某条未读消息的时候,我们也需要更新我们的未读消息计数器。 你可能会说,这有什么难的?我只要在我的阅读消息的方法里面,手动更新我的计数器不就好了?

比如这样:

class NotificationController(object):

  ... ...

  def mark_as_readed(self, notification_id):
    notification = Notification.objects.get(pk=notification_id)
    # 没有必要重复标记一个已经读过的通知
    if notication.has_readed:
      return

    notification.has_readed = True
    notification.save()
    # 在这里更新我们的计数器,嗯,我感觉好极了
    self.update_unread_count(-1)

登录后复制

通过一些简单的测试,你可以会觉得你的计数器工作的非常好,但是,这样的实现方式有一个 非常致命的问题, 这个方式没有办法正常处理并发的请求 。

打一个比方,你拥有一个id为100的未读消息对象,这个时候同时有了两个请求过来,都要标记这个通知为已读:

# 因为两个并发的请求,假设这两个方法几乎同时被调用
NotificationController(user_id).mark_as_readed(100)
NotificationController(user_id).mark_as_readed(100)
登录后复制

显而易见的,这两次方法都会成功的标记这条通知为已读,因为在并发的情况下, if notification.has_readed 这样的检查无法正常工作,所以我们的计数器将会被错误的 -1 两次 ,但其实我们只读了一条请求。

那么,这样的问题应该怎么解决呢?

基本上,解决并发请求产生的数据冲突只有一个办法: 加锁 ,介绍两种比较简单的解决方案:

使用 select for update 数据库查询

select ... for update 是数据库层面上专门用来解决并发取数据后再修改的场景的,主流的关系数据库 比如mysql、postgresql都支持这个功能, 新版的Django ORM甚至直接提供了这个功能的shortcut 。 关于它的更多介绍,你可以搜索你使用的数据库的介绍文档。

使用 select for update 后,我们的代码可能会变成这样:

from django.db import transaction

class NotificationController(object):

  ... ...

  def mark_as_readed(self, notification_id):
    # 手动让select for update和update语句发生在一个完整的事务里面
    with transaction.commit_on_success():
      # 使用select_for_update来保证并发请求同时只有一个请求在处理,其他的请求
      # 等待锁释放
      notification = Notification.objects.select_for_update().get(pk=notification_id)
      # 没有必要重复标记一个已经读过的通知
      if notication.has_readed:
        return

      notification.has_readed = True
      notification.save()
      # 在这里更新我们的计数器,嗯,我感觉好极了
      self.update_unread_count(-1)

登录后复制

除了使用``select for update``这样的功能,还有一个比较简单的办法来解决这个问题。

使用update来实现原子性修改

其实,更简单的办法,只要把我们的数据库改成单条的update就可以解决并发情况下的问题了:

def mark_as_readed(self, notification_id):
    affected_rows = Notification.objects.filter(pk=notification_id, has_readed=False)\
                      .update(has_readed=True)
    # affected_rows将会返回update语句修改的条目数
    self.update_unread_count(affected_rows)
登录后复制

这样,并发的标记已读操作也可以正确的影响到我们的计数器了。

高性能?
我们在之前介绍了如何实现一个能够正确更新的未读消息计数器,我们可能会直接使用UPDATE 语句来修改我们的计数器,就像这样:

from django.db.models import F

def update_unread_count(self, count)
  # 使用Update语句来更新我们的计数器
  UserNotificationsCount.objects.filter(pk=self.user_id)\
                 .update(unread_count=F('unread_count') + count)

登录后复制

但是在生产环境中,这样的处理方式很有可能造成严重的性能问题,因为如果我们的计数器在频繁 更新的话,海量的Update会给数据库造成不小的压力。所以为了实现一个高性能的计数器,我们 需要把改动暂存起来,然后批量写入到数据库。

使用 redis 的 sorted set ,我们可以非常轻松的做到这一点。

使用sorted set来缓存计数器改动

redis是一个非常好用的内存数据库,其中的sorted set是它提供的一种数据类型:有序集合, 使用它,我们可以非常简单的缓存所有的计数器改动,然后批量回写到数据库。

RK_NOTIFICATIONS_COUNTER = 'ss_pending_counter_changes'

def update_unread_count(self, count):
  """修改过的update_unread_count方法"""
  redisdb.zincrby(RK_NOTIFICATIONS_COUNTER, str(self.user_id), count)

# 同时我们也需要修改获取用户未读消息数方法,使其获取redis中那些没有被回写
# 到数据库的缓冲区数据。在这里代码就省略了

登录后复制

通过以上的代码,我们把计数器的更新缓冲在了redis里面,我们还需要一个脚本来把这个缓冲区 里面的数据定时回写到数据库中。

通过自定义django的command,我们可以非常轻松的做到这一点:

# File: management/commands/notification_update_counter.py

# -*- coding: utf-8 -*-
from django.core.management.base import BaseCommand
from django.db.models import F

# Fix import prob
from notification.models import UserNotificationsCount
from notification.utils import RK_NOTIFICATIONS_COUNTER
from base_redis import redisdb

import logging
logger = logging.getLogger('stdout')


class Command(BaseCommand):
  help = 'Update UserNotificationsCounter objects, Write changes from redis to database'

  def handle(self, *args, **options):
    # 首先,通过 zrange 命令来获取缓冲区所有修改过的用户ID
    for user_id in redisdb.zrange(RK_NOTIFICATIONS_COUNTER, 0, -1):
      # 这里值得注意,为了保证操作的原子性,我们使用了redisdb的pipeline
      pipe = redisdb.pipeline()
      pipe.zscore(RK_NOTIFICATIONS_COUNTER, user_id)
      pipe.zrem(RK_NOTIFICATIONS_COUNTER, user_id)
      count, _ = pipe.execute()
      count = int(count)
      if not count:
        continue

      logger.info('Updating unread count user %s: count %s' % (user_id, count))
      UserNotificationsCount.objects.filter(pk=obj.pk)\
                     .update(unread_count=F('unread_count') + count)

登录后复制

之后,通过 python manage.py notification_update_counter 这样的命令就可以把缓冲区 里面的改动批量回写到数据库了。我们还可以把这个命令配置到crontab中来定义执行。

总结
文章到了这里,一个简单的“高性能”未读消息计数器算是实现完了。说了这么多,其实主要的知识点就是这么些:

使用Django的signals来获取Model的新建/删除操作更新
使用数据库的select for update来正确处理并发的数据库操作
使用redis的sorted set来缓存计数器的修改操作
希望能对您有所帮助。 :)

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:代码示例和比较 PHP和Python:代码示例和比较 Apr 15, 2025 am 12:07 AM

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

CentOS上PyTorch的GPU支持情况如何 CentOS上PyTorch的GPU支持情况如何 Apr 14, 2025 pm 06:48 PM

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Python vs. JavaScript:社区,图书馆和资源 Python vs. JavaScript:社区,图书馆和资源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

docker原理详解 docker原理详解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

minio安装centos兼容性 minio安装centos兼容性 Apr 14, 2025 pm 05:45 PM

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

CentOS上PyTorch的分布式训练如何操作 CentOS上PyTorch的分布式训练如何操作 Apr 14, 2025 pm 06:36 PM

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

CentOS上PyTorch版本怎么选 CentOS上PyTorch版本怎么选 Apr 14, 2025 pm 06:51 PM

在CentOS系统上安装PyTorch,需要仔细选择合适的版本,并考虑以下几个关键因素:一、系统环境兼容性:操作系统:建议使用CentOS7或更高版本。CUDA与cuDNN:PyTorch版本与CUDA版本密切相关。例如,PyTorch1.9.0需要CUDA11.1,而PyTorch2.0.1则需要CUDA11.3。cuDNN版本也必须与CUDA版本匹配。选择PyTorch版本前,务必确认已安装兼容的CUDA和cuDNN版本。Python版本:PyTorch官方支

CentOS上如何更新PyTorch到最新版本 CentOS上如何更新PyTorch到最新版本 Apr 14, 2025 pm 06:15 PM

在CentOS上更新PyTorch到最新版本,可以按照以下步骤进行:方法一:使用pip升级pip:首先确保你的pip是最新版本,因为旧版本的pip可能无法正确安装最新版本的PyTorch。pipinstall--upgradepip卸载旧版本的PyTorch(如果已安装):pipuninstalltorchtorchvisiontorchaudio安装最新

See all articles