首页 后端开发 php教程 php-perl哈希算法实现(times33哈希算法)_PHP教程

php-perl哈希算法实现(times33哈希算法)_PHP教程

Jul 13, 2016 am 10:42 AM
declare 代码 哈希 复制 实现 算法

复制代码 代码如下:

APR_DECLARE_NONSTD(unsigned int) apr_hashfunc_default(const char *char_key,
                                                      apr_ssize_t *klen)
{
    unsigned int hash = 0;
    const unsigned char *key = (const unsigned char *)char_key;
    const unsigned char *p;
    apr_ssize_t i;

    /*
     * This is the popular `times 33' hash algorithm which is used by
     * perl and also appears in Berkeley DB. This is one of the best
     * known hash functions for strings because it is both computed
     * very fast and distributes very well.
     *
     * The originator may be Dan Bernstein but the code in Berkeley DB
     * cites Chris Torek as the source. The best citation I have found
     * is "Chris Torek, Hash function for text in C, Usenet message
     * in comp.lang.c , October, 1990." in Rich
     * Salz's USENIX 1992 paper about INN which can be found at
     * .
     *
     * The magic of number 33, i.e. why it works better than many other
     * constants, prime or not, has never been adequately explained by
     * anyone. So I try an explanation: if one experimentally tests all
     * multipliers between 1 and 256 (as I did while writing a low-level
     * data structure library some time ago) one detects that even
     * numbers are not useable at all. The remaining 128 odd numbers
     * (except for the number 1) work more or less all equally well.
     * They all distribute in an acceptable way and this way fill a hash
     * table with an average percent of approx. 86%.
     *
     * If one compares the chi^2 values of the variants (see
     * Bob Jenkins ``Hashing Frequently Asked Questions'' at
     * http://burtleburtle.net/bob/hash/hashfaq.html for a description
     * of chi^2), the number 33 not even has the best value. But the
     * number 33 and a few other equally good numbers like 17, 31, 63,
     * 127 and 129 have nevertheless a great advantage to the remaining
     * numbers in the large set of possible multipliers: their multiply
     * operation can be replaced by a faster operation based on just one
     * shift plus either a single addition or subtraction operation. And
     * because a hash function has to both distribute good _and_ has to
     * be very fast to compute, those few numbers should be preferred.
     *
     *                  -- Ralf S. Engelschall
     */

    if (*klen == APR_HASH_KEY_STRING) {
        for (p = key; *p; p++) {
            hash = hash * 33 + *p;
        }
        *klen = p - key;
    }
    else {
        for (p = key, i = *klen; i; i--, p++) {
            hash = hash * 33 + *p;
        }
    }
    return hash;
}

对函数注释部分的翻译: 这是很出名的times33哈希算法,此算法被perl语言采用并在Berkeley DB中出现.它是已知的最好的哈希算法之一,在处理以字符串为键值的哈希时,有着极快的计算效率和很好哈希分布.最早提出这个算法的是Dan Bernstein,但是源代码确实由Clris Torek在Berkeley DB出实作的.我找到的最确切的引文中这样说”Chris Torek,C语言文本哈希函数,Usenet消息 in comp.lang.c ,1990年十月.”在Rich Salz于1992年在USENIX报上发表的讨论INN的文章中提到.这篇文章可以在上找到. 33这个奇妙的数字,为什么它能够比其他数值效果更好呢?无论重要与否,却从来没有人能够充分说明其中的原因.因此在这里,我来试着解释一下.如果某人试着测试1到256之间的每个数字(就像我前段时间写的一个底层数据结构库那样),他会发现,没有哪一个数字的表现是特别突出的.其中的128个奇数(1除外)的表现都差不多,都能够达到一个能接受的哈希分布,平均分布率大概是86%. 如果比较这128个奇数中的方差值(gibbon:统计术语,表示随机变量与它的数学期望之间的平均偏离程度)的话(见Bob Jenkins的http://burtleburtle.net/bob/hash/hashfaq.html,中对平方差的描述),数字33并不是表现最好的一个.(gibbon:这里按照我的理解,照常理,应该是方差越小稳定,但是由于这里不清楚作者方差的计算公式,以及在哈希离散表,是不是离散度越大越好,所以不得而知这里的表现好是指方差值大还是指方差值小),但是数字33以及其他一些同样好的数字比如 17,31,63,127和129对于其他剩下的数字,在面对大量的哈希运算时,仍然有一个大大的优势,就是这些数字能够将乘法用位运算配合加减法来替换,这样的运算速度会提高.毕竟一个好的哈希算法要求既有好的分布,也要有高的计算速度,能同时达到这两点的数字很少.

www.bkjia.comtruehttp://www.bkjia.com/PHPjc/633589.htmlTechArticle复制代码 代码如下: APR_DECLARE_NONSTD(unsigned int) apr_hashfunc_default(const char *char_key, apr_ssize_t *klen) { unsigned int hash = 0; const unsigned char *key = (const...
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

CLIP-BEVFormer:显式监督BEVFormer结构,提升长尾检测性能 CLIP-BEVFormer:显式监督BEVFormer结构,提升长尾检测性能 Mar 26, 2024 pm 12:41 PM

写在前面&笔者的个人理解目前,在整个自动驾驶系统当中,感知模块扮演了其中至关重要的角色,行驶在道路上的自动驾驶车辆只有通过感知模块获得到准确的感知结果后,才能让自动驾驶系统中的下游规控模块做出及时、正确的判断和行为决策。目前,具备自动驾驶功能的汽车中通常会配备包括环视相机传感器、激光雷达传感器以及毫米波雷达传感器在内的多种数据信息传感器来收集不同模态的信息,用于实现准确的感知任务。基于纯视觉的BEV感知算法因其较低的硬件成本和易于部署的特点,以及其输出结果能便捷地应用于各种下游任务,因此受到工业

华为手机如何实现双微信登录? 华为手机如何实现双微信登录? Mar 24, 2024 am 11:27 AM

华为手机如何实现双微信登录?随着社交媒体的兴起,微信已经成为人们日常生活中不可或缺的沟通工具之一。然而,许多人可能会遇到一个问题:在同一部手机上同时登录多个微信账号。对于华为手机用户来说,实现双微信登录并不困难,本文将介绍华为手机如何实现双微信登录的方法。首先,华为手机自带的EMUI系统提供了一个很便利的功能——应用双开。通过应用双开功能,用户可以在手机上同

使用C++实现机器学习算法:常见挑战及解决方案 使用C++实现机器学习算法:常见挑战及解决方案 Jun 03, 2024 pm 01:25 PM

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

探究C++sort函数的底层原理与算法选择 探究C++sort函数的底层原理与算法选择 Apr 02, 2024 pm 05:36 PM

C++sort函数底层采用归并排序,其复杂度为O(nlogn),并提供不同的排序算法选择,包括快速排序、堆排序和稳定排序。

PHP编程指南:实现斐波那契数列的方法 PHP编程指南:实现斐波那契数列的方法 Mar 20, 2024 pm 04:54 PM

编程语言PHP是一种用于Web开发的强大工具,能够支持多种不同的编程逻辑和算法。其中,实现斐波那契数列是一个常见且经典的编程问题。在这篇文章中,将介绍如何使用PHP编程语言来实现斐波那契数列的方法,并附上具体的代码示例。斐波那契数列是一个数学上的序列,其定义如下:数列的第一个和第二个元素为1,从第三个元素开始,每个元素的值等于前两个元素的和。数列的前几个元

如何在华为手机上实现微信分身功能 如何在华为手机上实现微信分身功能 Mar 24, 2024 pm 06:03 PM

如何在华为手机上实现微信分身功能随着社交软件的普及和人们对隐私安全的日益重视,微信分身功能逐渐成为人们关注的焦点。微信分身功能可以帮助用户在同一台手机上同时登录多个微信账号,方便管理和使用。在华为手机上实现微信分身功能并不困难,只需要按照以下步骤操作即可。第一步:确保手机系统版本和微信版本符合要求首先,确保你的华为手机系统版本已更新到最新版本,以及微信App

人工智能可以预测犯罪吗?探索CrimeGPT的能力 人工智能可以预测犯罪吗?探索CrimeGPT的能力 Mar 22, 2024 pm 10:10 PM

人工智能(AI)与执法领域的融合为犯罪预防和侦查开辟了新的可能性。人工智能的预测能力被广泛应用于CrimeGPT(犯罪预测技术)等系统,用于预测犯罪活动。本文探讨了人工智能在犯罪预测领域的潜力、目前的应用情况、所面临的挑战以及相关技术可能带来的道德影响。人工智能和犯罪预测:基础知识CrimeGPT利用机器学习算法来分析大量数据集,识别可以预测犯罪可能发生的地点和时间的模式。这些数据集包括历史犯罪统计数据、人口统计信息、经济指标、天气模式等。通过识别人类分析师可能忽视的趋势,人工智能可以为执法机构

改进的检测算法:用于高分辨率光学遥感图像目标检测 改进的检测算法:用于高分辨率光学遥感图像目标检测 Jun 06, 2024 pm 12:33 PM

01前景概要目前,难以在检测效率和检测结果之间取得适当的平衡。我们就研究出了一种用于高分辨率光学遥感图像中目标检测的增强YOLOv5算法,利用多层特征金字塔、多检测头策略和混合注意力模块来提高光学遥感图像的目标检测网络的效果。根据SIMD数据集,新算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在检测结果和速度之间实现了更好的平衡。02背景&动机随着远感技术的快速发展,高分辨率光学远感图像已被用于描述地球表面的许多物体,包括飞机、汽车、建筑物等。目标检测在远感图像的解释中

See all articles