Python中列表和元组的使用方法和区别详解
一、二者区别
列表:
1.可以增加列表内容 append
2.可以统计某个列表段在整个列表中出现的次数 count
3.可以插入一个字符串,并把整个字符串的每个字母拆分当作一个列表段追加到列表当中 extedn
4.可以查询某个列表段在整个列表的位置 index
5.可以在指定位置插入一个列表段 insert
6.可以删除列表的最后一个列表段 pop
7.可以删除指定列表中的某个列表段 remove
8.可以正向反向排序 reverse
9.可以按字母或数字排序 sort
10.定义列表时候使用中括号"[]"
注意:在列表当中,假如某两个列表段相同,不管是使用index还是remove都是统计的最靠前的列表段
元组:
1.可以统计某个元组段在整个元组中出现的次数 count
2.可以查询某个元组段在整个元组中的元组号 index
3.定义元组时候使用小括号"()"
二、二者的使用方法
列表
#定义列表 >>> name_list = ['sean','tom','jack','Angelia','Daisy','jack'] #查看定义的列表 >>> name_list ['sean', 'tom', 'jack', 'Angelia', 'Daisy', 'jack'] #增加david列表段 >>> name_list.append('david') >>> name_list ['sean', 'tom', 'jack', 'Angelia', 'Daisy', 'jack', 'david'] #统计david列表段出现次数 >>> name_list.count('david') 1 >>> name_list.count('jack') 2 #使用extend向列表中增加列表段 >>> name_list.extend('Hello,My name is sean') >>> name_list ['sean', 'tom', 'jack', 'Angelia', 'Daisy', 'jack', 'david', 'H', 'e', 'l', 'l', 'o', ',', 'M', 'y', ' ', 'n', 'a', 'm', 'e', ' ', 'i', 's', ' ', 's', 'e', 'a', 'n'] #查看列表段所在的索引号,注意这里统计的jack为第一个jack id号 >>> name_list.index('jack') 2 >>> name_list.index('tom') 1 #向索引号为2的地方插入Adam >>> name_list.insert(2,'Adam') >>> name_list ['sean', 'tom', 'Adam', 'jack', 'Angelia', 'Daisy', 'jack', 'david', 'H', 'e', 'l', 'l', 'o', ',', 'M', 'y', ' ', 'n', 'a', 'm', 'e', ' ', 'i', 's', ' ', 's', 'e', 'a', 'n'] #删除最后一个列表段 >>> name_list.pop() 'n' >>> name_list ['sean', 'tom', 'Adam', 'jack', 'Angelia', 'Daisy', 'jack', 'david', 'H', 'e', 'l', 'l', 'o', ',', 'M', 'y', ' ', 'n', 'a', 'm', 'e', ' ', 'i', 's', ' ', 's', 'e', 'a'] #删除指定列表段,注意这里删除的是第一个jack >>> name_list.remove('jack') >>> name_list ['sean', 'tom', 'Adam', 'Angelia', 'Daisy', 'jack', 'david', 'H', 'e', 'l', 'l', 'o', ',', 'M', 'y', ' ', 'n', 'a', 'm', 'e', ' ', 'i', 's', ' ', 's', 'e', 'a'] #对整个列表进行倒序 >>> name_list.reverse() >>> name_list ['a', 'e', 's', ' ', 's', 'i', ' ', 'e', 'm', 'a', 'n', ' ', 'y', 'M', ',', 'o', 'l', 'l', 'e', 'H', 'david', 'jack', 'Daisy', 'Angelia', 'Adam', 'tom', 'sean'] #对整个列表进行倒序 >>> name_list.reverse() >>> name_list ['sean', 'tom', 'Adam', 'Angelia', 'Daisy', 'jack', 'david', 'H', 'e', 'l', 'l', 'o', ',', 'M', 'y', ' ', 'n', 'a', 'm', 'e', ' ', 'i', 's', ' ', 's', 'e', 'a'] #对整个列表进行列表段的首字母进行排序 >>> name_list.sort() >>> name_list [' ', ' ', ' ', ',', 'Adam', 'Angelia', 'Daisy', 'H', 'M', 'a', 'a', 'david', 'e', 'e', 'e', 'i', 'jack', 'l', 'l', 'm', 'n', 'o', 's', 's', 'sean', 'tom', 'y'] >>>
元组
#定义元组name_tuple >>> name_tuple = ('xiaoming','xiaohong','xiaoli','xiaozhang','xiaoming') >>> name_tuple ('xiaoming', 'xiaohong', 'xiaoli', 'xiaozhang', 'xiaoming') #统计xiaoming、xiaohong在元组内出现的次数 >>> name_tuple.count('xiaoming') 2 >>> name_tuple.count('xiaohong') 1 #查询xiaoming、xiaohong、xiaozhang在元组内的id号 >>> name_tuple.index('xiaoming') 0 >>> name_tuple.index('xiaohong') 1 >>> name_tuple.index('xiaozhang') 3 >>> #尝试增加一个元组单元 >>> name_tuple.append('xiaowang') Traceback (most recent call last): File "<pyshell#49>", line 1, in <module> name_tuple.append('xiaowang') AttributeError: 'tuple' object has no attribute 'append' >>>
元组的元素是不可变的,元组的元素的元素是可变的
>>> tuple_A = (1,2,{'k1':'v1'}) >>> for i in tuple_A: ... print i ... 1 2 {'k1': 'v1'} #更改元素 >>> tuple_A[2]['k1'] = 'v2' >>> for i in tuple_A: ... print i ... 1 2 {'k1': 'v2'} >>>

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

PDF 文件因其跨平台兼容性而广受欢迎,内容和布局在不同操作系统、阅读设备和软件上保持一致。然而,与 Python 处理纯文本文件不同,PDF 文件是二进制文件,结构更复杂,包含字体、颜色和图像等元素。 幸运的是,借助 Python 的外部模块,处理 PDF 文件并非难事。本文将使用 PyPDF2 模块演示如何打开 PDF 文件、打印页面和提取文本。关于 PDF 文件的创建和编辑,请参考我的另一篇教程。 准备工作 核心在于使用外部模块 PyPDF2。首先,使用 pip 安装它: pip 是 P

本教程演示了如何利用Redis缓存以提高Python应用程序的性能,特别是在Django框架内。 我们将介绍REDIS安装,Django配置和性能比较,以突出显示BENE

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

Python是数据科学和处理的最爱,为高性能计算提供了丰富的生态系统。但是,Python中的并行编程提出了独特的挑战。本教程探讨了这些挑战,重点是全球解释

本教程演示了在Python 3中创建自定义管道数据结构,利用类和操作员超载以增强功能。 管道的灵活性在于它能够将一系列函数应用于数据集的能力,GE
