python中执行命令的3种方法小结
目前我使用到的python中执行cmd的方式有三种:
1. 使用os.system("cmd")
特点是执行的时候程序会打出cmd在linux上执行的信息。
import os os.system("ls")
2. 使用Popen模块产生新的process
现在大部分人都喜欢使用Popen。Popen方法不会打印出cmd在linux上执行的信息。的确,Popen非常强大,支持多种参数和模式。使用前需要from subprocess import Popen, PIPE。但是Popen函数有一个缺陷,就是它是一个阻塞的方法。如果运行cmd时产生的内容非常多,函数非常容易阻塞住。解决办法是不使用wait()方法,但是也不能获得执行的返回值了。
Popen原型是:
subprocess.Popen(args, bufsize=0, executable=None, stdin=None, stdout=None, stderr=None, preexec_fn=None, close_fds=False, shell=False, cwd=None, env=None, universal_newlines=False, startupinfo=None, creationflags=0)
参数bufsize:指定缓冲。
参数executable用于指定可执行程序。一般情况下我们通过args参数来设置所要运行的程序。如果将参数shell设为 True,executable将指定程序使用的shell。在windows平台下,默认的shell由COMSPEC环境变量来指定。
参数stdin, stdout, stderr分别表示程序的标准输入、输出、错误句柄。他们可以是PIPE,文件描述符或文件对象,也可以设置为None,表示从父进程继承。
参数preexec_fn只在Unix平台下有效,用于指定一个可执行对象(callable object),它将在子进程运行之前被调用。
参数Close_sfs:在windows平台下,如果close_fds被设置为True,则新创建的子进程将不会继承父进程的输入、输出、错误管 道。我们不能将close_fds设置为True同时重定向子进程的标准输入、输出与错误(stdin, stdout, stderr)。
如果参数shell设为true,程序将通过shell来执行。
参数cwd用于设置子进程的当前目录。
参数env是字典类型,用于指定子进程的环境变量。如果env = None,子进程的环境变量将从父进程中继承。
参数Universal_newlines:不同操作系统下,文本的换行符是不一样的。如:windows下用’/r/n’表示换,而Linux下用 ‘/n’。如果将此参数设置为True,Python统一把这些换行符当作’/n’来处理。
参数startupinfo与createionflags只在windows下用效,它们将被传递给底层的CreateProcess()函数,用 于设置子进程的一些属性,如:主窗口的外观,进程的优先级等等。
subprocess.PIPE
在创建Popen对象时,subprocess.PIPE可以初始化stdin, stdout或stderr参数,表示与子进程通信的标准流。
subprocess.STDOUT
创建Popen对象时,用于初始化stderr参数,表示将错误通过标准输出流输出。
Popen的方法:
Popen.poll()
用于检查子进程是否已经结束。设置并返回returncode属性。
Popen.wait()
等待子进程结束。设置并返回returncode属性。
Popen.communicate(input=None)
与子进程进行交互。向stdin发送数据,或从stdout和stderr中读取数据。可选参数input指定发送到子进程的参数。 Communicate()返回一个元组:(stdoutdata, stderrdata)。注意:如果希望通过进程的stdin向其发送数据,在创建Popen对象的时候,参数stdin必须被设置为PIPE。同样,如 果希望从stdout和stderr获取数据,必须将stdout和stderr设置为PIPE。
Popen.send_signal(signal)
向子进程发送信号。
Popen.terminate()
停止(stop)子进程。在windows平台下,该方法将调用Windows API TerminateProcess()来结束子进程。
Popen.kill()
杀死子进程。
Popen.stdin
如果在创建Popen对象是,参数stdin被设置为PIPE,Popen.stdin将返回一个文件对象用于策子进程发送指令。否则返回None。
Popen.stdout
如果在创建Popen对象是,参数stdout被设置为PIPE,Popen.stdout将返回一个文件对象用于策子进程发送指令。否则返回 None。
Popen.stderr
如果在创建Popen对象是,参数stdout被设置为PIPE,Popen.stdout将返回一个文件对象用于策子进程发送指令。否则返回 None。
Popen.pid
获取子进程的进程ID。
Popen.returncode
获取进程的返回值。如果进程还没有结束,返回None。
例如:
p = Popen("cp -rf a/* b/", shell=True, stdout=PIPE, stderr=PIPE) p.wait() if p.returncode != 0: print "Error." return -1
3. 使用commands.getstatusoutput方法
这个方法也不会打印出cmd在linux上执行的信息。这个方法唯一的优点是,它不是一个阻塞的方法。即没有Popen函数阻塞的问题。使用前需要import commands。
例如:
status, output = commands.getstatusoutput("ls")
还有只获得output和status的方法:
commands.getoutput("ls") commands.getstatus("ls")

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

在CentOS系统上安装PyTorch,需要仔细选择合适的版本,并考虑以下几个关键因素:一、系统环境兼容性:操作系统:建议使用CentOS7或更高版本。CUDA与cuDNN:PyTorch版本与CUDA版本密切相关。例如,PyTorch1.9.0需要CUDA11.1,而PyTorch2.0.1则需要CUDA11.3。cuDNN版本也必须与CUDA版本匹配。选择PyTorch版本前,务必确认已安装兼容的CUDA和cuDNN版本。Python版本:PyTorch官方支

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。
