Python 性能分析工具简介
性能分析和调优工具简介
总会遇到一个时候你会想提高程序执行效率,想看看哪部分耗时长成为瓶颈,想知道程序运行时内存和CPU使用情况。这时候你会需要一些方法对程序进行性能分析和调优。
By Context Manager
可以上下文管理器自己实现一个计时器, 参见之前的介绍 timeit 文章里做的那样,通过定义类的 __enter__ 和 __exit__ 方法来实现对管理的函数计时, 类似如:
# timer.py import time class Timer(object): def __init__(self, verbose=False): self.verbose = verbose def __enter__(self): self.start = time.time() return self def __exit__(self, *args): self.end = time.time() self.secs = self.end - self.start self.msecs = self.secs * 1000 # 毫秒 if self.verbose: print 'elapsed time: %f ms' % self.msecs
使用方式如下:
from timer import Timer with Timer() as t: foo() print "=> foo() spends %s s" % t.secs
By Decorator
然而我认为装饰器的方式更加优雅
import time from functools import wraps def timer(function): @wraps(function) def function_timer(*args, **kwargs): t0 = time.time() result = function(*args, **kwargs) t1 = time.time() print ("Total time running %s: %s seconds" % (function.func_name, str(t1-t0)) ) return result return function_timer
使用就很简单了:
@timer def my_sum(n): return sum([i for i in range(n)]) if __name__ == "__main__": my_sum(10000000)
运行结果:
➜ python profile.py Total time running my_sum: 0.817697048187 seconds
系统自带的time命令
使用示例如下:
➜ time python profile.py Total time running my_sum: 0.854454040527 seconds python profile.py 0.79s user 0.18s system 98% cpu 0.977 total
上面的结果说明: 执行脚本消耗0.79sCPU时间, 0.18秒执行内核函数消耗的时间,总共0.977s时间。
其中, total时间 - (user时间 + system时间) = 消耗在输入输出和系统执行其它任务消耗的时间
python timeit 模块
可以用来做benchmark, 可以方便的重复一个程序执行的次数,来查看程序可以运行多块。具体参考之前写的文章。
cProfile
直接看带注释的使用示例吧。
#coding=utf8 def sum_num(max_num): total = 0 for i in range(max_num): total += i return total def test(): total = 0 for i in range(40000): total += i t1 = sum_num(100000) t2 = sum_num(200000) t3 = sum_num(300000) t4 = sum_num(400000) t5 = sum_num(500000) test2() return total def test2(): total = 0 for i in range(40000): total += i t6 = sum_num(600000) t7 = sum_num(700000) return total if __name__ == "__main__": import cProfile # # 直接把分析结果打印到控制台 # cProfile.run("test()") # # 把分析结果保存到文件中 # cProfile.run("test()", filename="result.out") # 增加排序方式 cProfile.run("test()", filename="result.out", sort="cumulative")
cProfile将分析的结果保存到result.out文件中,但是以二进制形式存储的,想直接查看的话用提供的 pstats 来查看。
import pstats # 创建Stats对象 p = pstats.Stats("result.out") # strip_dirs(): 去掉无关的路径信息 # sort_stats(): 排序,支持的方式和上述的一致 # print_stats(): 打印分析结果,可以指定打印前几行 # 和直接运行cProfile.run("test()")的结果是一样的 p.strip_dirs().sort_stats(-1).print_stats() # 按照函数名排序,只打印前3行函数的信息, 参数还可为小数,表示前百分之几的函数信息 p.strip_dirs().sort_stats("name").print_stats(3) # 按照运行时间和函数名进行排序 p.strip_dirs().sort_stats("cumulative", "name").print_stats(0.5) # 如果想知道有哪些函数调用了sum_num p.print_callers(0.5, "sum_num") # 查看test()函数中调用了哪些函数 p.print_callees("test")
截取一个查看test()调用了哪些函数的输出示例:
➜ python python profile.py Random listing order was used List reduced from 6 to 2 due to restriction <'test'> Function called... ncalls tottime cumtime profile.py:24(test2) -> 2 0.061 0.077 profile.py:3(sum_num) 1 0.000 0.000 {range} profile.py:10(test) -> 5 0.073 0.094 profile.py:3(sum_num) 1 0.002 0.079 profile.py:24(test2) 1 0.001 0.001 {range}
profile.Profile
cProfile还提供了可以自定义的类,可以更精细的分析, 具体看文档。
格式如: class profile.Profile(timer=None, timeunit=0.0, subcalls=True, builtins=True)
下面这个例子来自官方文档:
import cProfile, pstats, StringIO pr = cProfile.Profile() pr.enable() # ... do something ... pr.disable() s = StringIO.StringIO() sortby = 'cumulative' ps = pstats.Stats(pr, stream=s).sort_stats(sortby) ps.print_stats() print s.getvalue()
lineprofiler
lineprofiler是一个对函数进行逐行性能分析的工具,可以参见github项目说明,地址: https://github.com/rkern/line...
示例
#coding=utf8 def sum_num(max_num): total = 0 for i in range(max_num): total += i return total @profile # 添加@profile 来标注分析哪个函数 def test(): total = 0 for i in range(40000): total += i t1 = sum_num(10000000) t2 = sum_num(200000) t3 = sum_num(300000) t4 = sum_num(400000) t5 = sum_num(500000) test2() return total def test2(): total = 0 for i in range(40000): total += i t6 = sum_num(600000) t7 = sum_num(700000) return total test()
通过 kernprof 命令来注入分析,运行结果如下:
➜ kernprof -l -v profile.py Wrote profile results to profile.py.lprof Timer unit: 1e-06 s Total time: 3.80125 s File: profile.py Function: test at line 10 Line # Hits Time Per Hit % Time Line Contents ============================================================== 10 @profile 11 def test(): 12 1 5 5.0 0.0 total = 0 13 40001 19511 0.5 0.5 for i in range(40000): 14 40000 19066 0.5 0.5 total += i 15 16 1 2974373 2974373.0 78.2 t1 = sum_num(10000000) 17 1 58702 58702.0 1.5 t2 = sum_num(200000) 18 1 81170 81170.0 2.1 t3 = sum_num(300000) 19 1 114901 114901.0 3.0 t4 = sum_num(400000) 20 1 155261 155261.0 4.1 t5 = sum_num(500000) 21 1 378257 378257.0 10.0 test2() 22 23 1 2 2.0 0.0 return total
hits(执行次数) 和 time(耗时) 值高的地方是有比较大优化空间的地方。
memoryprofiler
类似于"lineprofiler"对基于行分析程序内存使用情况的模块。github 地址:https://github.com/fabianp/me... 。ps:安装 psutil, 会分析的更快。
同样是上面"lineprofiler"中的代码,运行 python -m memory_profiler profile.py 命令生成结果如下:
➜ python -m memory_profiler profile.py Filename: profile.py Line # Mem usage Increment Line Contents ================================================ 10 24.473 MiB 0.000 MiB @profile 11 def test(): 12 24.473 MiB 0.000 MiB total = 0 13 25.719 MiB 1.246 MiB for i in range(40000): 14 25.719 MiB 0.000 MiB total += i 15 16 335.594 MiB 309.875 MiB t1 = sum_num(10000000) 17 337.121 MiB 1.527 MiB t2 = sum_num(200000) 18 339.410 MiB 2.289 MiB t3 = sum_num(300000) 19 342.465 MiB 3.055 MiB t4 = sum_num(400000) 20 346.281 MiB 3.816 MiB t5 = sum_num(500000) 21 356.203 MiB 9.922 MiB test2() 22 23 356.203 MiB 0.000 MiB return total

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

MySQL 有免费的社区版和收费的企业版。社区版可免费使用和修改,但支持有限,适合稳定性要求不高、技术能力强的应用。企业版提供全面商业支持,适合需要稳定可靠、高性能数据库且愿意为支持买单的应用。选择版本时考虑的因素包括应用关键性、预算和技术技能。没有完美的选项,只有最合适的方案,需根据具体情况谨慎选择。

文章介绍了MySQL数据库的上手操作。首先,需安装MySQL客户端,如MySQLWorkbench或命令行客户端。1.使用mysql-uroot-p命令连接服务器,并使用root账户密码登录;2.使用CREATEDATABASE创建数据库,USE选择数据库;3.使用CREATETABLE创建表,定义字段及数据类型;4.使用INSERTINTO插入数据,SELECT查询数据,UPDATE更新数据,DELETE删除数据。熟练掌握这些步骤,并学习处理常见问题和优化数据库性能,才能高效使用MySQL。

MySQL安装失败的原因主要有:1.权限问题,需以管理员身份运行或使用sudo命令;2.依赖项缺失,需安装相关开发包;3.端口冲突,需关闭占用3306端口的程序或修改配置文件;4.安装包损坏,需重新下载并验证完整性;5.环境变量配置错误,需根据操作系统正确配置环境变量。解决这些问题,仔细检查每个步骤,就能顺利安装MySQL。

MySQL下载文件损坏,咋整?哎,下载个MySQL都能遇到文件损坏,这年头真是不容易啊!这篇文章就来聊聊怎么解决这个问题,让大家少走弯路。读完之后,你不仅能修复损坏的MySQL安装包,还能对下载和安装过程有更深入的理解,避免以后再踩坑。先说说为啥下载文件会损坏这原因可多了去了,网络问题是罪魁祸首,下载过程中断、网络不稳定都可能导致文件损坏。还有就是下载源本身的问题,服务器文件本身就坏了,你下载下来当然也是坏的。另外,一些杀毒软件过度“热情”的扫描也可能造成文件损坏。诊断问题:确定文件是否真的损坏

MySQL数据库性能优化指南在资源密集型应用中,MySQL数据库扮演着至关重要的角色,负责管理海量事务。然而,随着应用规模的扩大,数据库性能瓶颈往往成为制约因素。本文将探讨一系列行之有效的MySQL性能优化策略,确保您的应用在高负载下依然保持高效响应。我们将结合实际案例,深入讲解索引、查询优化、数据库设计以及缓存等关键技术。1.数据库架构设计优化合理的数据库架构是MySQL性能优化的基石。以下是一些核心原则:选择合适的数据类型选择最小的、符合需求的数据类型,既能节省存储空间,又能提升数据处理速度

MySQL性能优化需从安装配置、索引及查询优化、监控与调优三个方面入手。1.安装后需根据服务器配置调整my.cnf文件,例如innodb_buffer_pool_size参数,并关闭query_cache_size;2.创建合适的索引,避免索引过多,并优化查询语句,例如使用EXPLAIN命令分析执行计划;3.利用MySQL自带监控工具(SHOWPROCESSLIST,SHOWSTATUS)监控数据库运行状况,定期备份和整理数据库。通过这些步骤,持续优化,才能提升MySQL数据库性能。

MySQL拒启动?别慌,咱来排查!很多朋友安装完MySQL后,发现服务死活启动不了,心里那个急啊!别急,这篇文章带你从容应对,揪出幕后黑手!读完后,你不仅能解决这个问题,还能提升对MySQL服务的理解,以及排查问题的思路,成为一名更强大的数据库管理员!MySQL服务启动失败,原因五花八门,从简单的配置错误到复杂的系统问题都有可能。咱们先从最常见的几个方面入手。基础知识:服务启动流程简述MySQL服务启动,简单来说,就是操作系统加载MySQL相关的文件,然后启动MySQL守护进程。这其中涉及到配置

MySQL 可在无需网络连接的情况下运行,进行基本的数据存储和管理。但是,对于与其他系统交互、远程访问或使用高级功能(如复制和集群)的情况,则需要网络连接。此外,安全措施(如防火墙)、性能优化(选择合适的网络连接)和数据备份对于连接到互联网的 MySQL 数据库至关重要。
