.Net 的 IDisposable interface
.Net Framework 中的 Garbage Collection 会帮助程序员自动回收托管资源,这对类库的调用者而言,是个相当惬意的体验:可以在任何位置,任何时候,创建任何对象,GC 最后总是会兜底。易地而处,当自己是类库提供者的时候,则需要如何才能提供这样良好的体验呢?
首先,.Net framework 里面哪些是托管的资源,哪些是非托管的资源?
基本上,在 .Net framework 里面的所有类,都是托管资源,包括各种各样的 stream(例如 FileStream, MemoryStream), database connection, components 等等。。
可以写一个简单的小程序验证:(以 FileStream 为例)
一个方法,在后台线程中监控文件是否正在被占用:
private static void MonitorFileStatus(string fileName) { Console.WriteLine("Start to monitor file: {0}", fileName); Task.Factory.StartNew(() => { while(true) { bool isInUse = IsFileInUse(fileName); string messageFormat = isInUse ? "File {0} is in use." : "File {0} is released."; Console.WriteLine(messageFormat, fileName); Thread.Sleep(oneSeconds); } }); } private static bool IsFileInUse(string fileName) { bool isInUse = true; FileStream stream = null; try { stream = File.Open(fileName, FileMode.Append, FileAccess.Write); isInUse = false; } catch { } finally { if (stream != null) { stream.Dispose(); } } return isInUse; }
再写一个占着文件不用的方法, FileStream 只是个局部变量,这个方法返回的时候,它应该被回收:
private static void OpenFile() { FileStream stream = File.Open(TestFileName, FileMode.Append, FileAccess.Write); Wait(fiveSeconds); }
最后是一个必不可少的等待:
private static void Wait(TimeSpan time) { Console.WriteLine("Wait for {0} seconds...", time.TotalSeconds); Thread.Sleep(time); }
合并起来就是一个测试:
首先启动文件监视线程,然后打开文件不用。
OpenFile 方法返回,预测 FileStream 被回收
接着调用 GC, 看文件是否被释放了
private static void FileTest() { MonitorFileStatus(TestFileName); OpenFile(); CallGC(); Wait(fiveSeconds); }
运行结果,可见 GC 自动把 FileStream 自动回收。无须调用 Dispose 方法,也无须使用 using
那么,非托管资源包括哪些呢?
通常,涉及到 windows api 的 pinvoke,各种的 intptr 都是非托管资源。例如,同样是打开文件,如果写成以下的样子,就包括了非托管资源
[Flags] internal enum OpenFileStyle : uint { OF_CANCEL = 0x00000800, // Ignored. For a dialog box with a Cancel button, use OF_PROMPT. OF_CREATE = 0x00001000, // Creates a new file. If file exists, it is truncated to zero (0) length. OF_DELETE = 0x00000200, // Deletes a file. OF_EXIST = 0x00004000, // Opens a file and then closes it. Used to test that a file exists OF_PARSE = 0x00000100, // Fills the OFSTRUCT structure, but does not do anything else. OF_PROMPT = 0x00002000, // Displays a dialog box if a requested file does not exist OF_READ = 0x00000000, // Opens a file for reading only. OF_READWRITE = 0x00000002, // Opens a file with read/write permissions. OF_REOPEN = 0x00008000, // Opens a file by using information in the reopen buffer. // For MS-DOS–based file systems, opens a file with compatibility mode, allows any process on a // specified computer to open the file any number of times. // Other efforts to open a file with other sharing modes fail. This flag is mapped to the // FILE_SHARE_READ|FILE_SHARE_WRITE flags of the CreateFile function. OF_SHARE_COMPAT = 0x00000000, // Opens a file without denying read or write access to other processes. // On MS-DOS-based file systems, if the file has been opened in compatibility mode // by any other process, the function fails. // This flag is mapped to the FILE_SHARE_READ|FILE_SHARE_WRITE flags of the CreateFile function. OF_SHARE_DENY_NONE = 0x00000040, // Opens a file and denies read access to other processes. // On MS-DOS-based file systems, if the file has been opened in compatibility mode, // or for read access by any other process, the function fails. // This flag is mapped to the FILE_SHARE_WRITE flag of the CreateFile function. OF_SHARE_DENY_READ = 0x00000030, // Opens a file and denies write access to other processes. // On MS-DOS-based file systems, if a file has been opened in compatibility mode, // or for write access by any other process, the function fails. // This flag is mapped to the FILE_SHARE_READ flag of the CreateFile function. OF_SHARE_DENY_WRITE = 0x00000020, // Opens a file with exclusive mode, and denies both read/write access to other processes. // If a file has been opened in any other mode for read/write access, even by the current process, // the function fails. OF_SHARE_EXCLUSIVE = 0x00000010, // Verifies that the date and time of a file are the same as when it was opened previously. // This is useful as an extra check for read-only files. OF_VERIFY = 0x00000400, // Opens a file for write access only. OF_WRITE = 0x00000001 } [StructLayout(LayoutKind.Sequential)] internal struct OFSTRUCT { public byte cBytes; public byte fFixedDisc; public UInt16 nErrCode; public UInt16 Reserved1; public UInt16 Reserved2; [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 128)] public string szPathName; } class WindowsApi { [DllImport("kernel32.dll", BestFitMapping = false, ThrowOnUnmappableChar = true)] internal static extern IntPtr OpenFile([MarshalAs(UnmanagedType.LPStr)]string lpFileName, out OFSTRUCT lpReOpenBuff, OpenFileStyle uStyle); [DllImport("kernel32.dll", SetLastError = true)] [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)] [SuppressUnmanagedCodeSecurity] [return: MarshalAs(UnmanagedType.Bool)] internal static extern bool CloseHandle(IntPtr hObject); }
处理非托管资源,需要实现 IDisposable interface。原因有两个:
不能依赖析构函数,因为异构函数的调用由 GC 决定。无法实时释放紧缺的资源。
有一通用的处理原则:析构函数处理托管资源,IDisposable interface 处理托管与非托管资源。
如上述的例子,完成的实现代码如下:
public class UnmanagedFileHolder : IFileHolder, IDisposable { private IntPtr _handle; private string _fileName; public UnmanagedFileHolder(string fileName) { _fileName = fileName; } public void OpenFile() { Console.WriteLine("Open file with windows api."); OFSTRUCT info; _handle = WindowsApi.OpenFile(_fileName, out info, OpenFileStyle.OF_READWRITE); } #region IDisposable Support private bool disposed = false; protected virtual void Dispose(bool disposing) { if (!disposed) { if (disposing) { // no managed resource } WindowsApi.CloseHandle(_handle); _handle = IntPtr.Zero; disposed = true; } } ~UnmanagedFileHolder() { Dispose(false); } public void Dispose() { Dispose(true); GC.SuppressFinalize(this); } #endregion }
如果同一个类里面既有托管资源,也有非托管资源,那样应该怎么办呢?
可以依照下面的模式:
class HybridPattern : IDisposable { private bool _disposed = false; ~HybridPattern() { Dispose(false); } protected void Dispose(bool disposing) { if (_disposed) { return; } if (disposing) { // Code to dispose the managed resources of the class // internalComponent1.Dispose(); } // Code to dispose the un-managed resources of the class // CloseHandle(handle); // handle = IntPtr.Zero; _disposed = true; } public void Dispose() { Dispose(true); GC.SuppressFinalize(this); } }
以下为完整的例子,有托管的 FileStream, 以及非托管的 Handler
public class HybridHolder : IFileHolder, IDisposable { private string _unmanagedFile; private string _managedFile; private IntPtr _handle; private FileStream _stream; public HybridHolder(string unmanagedFile, string managedFile) { _unmanagedFile = unmanagedFile; _managedFile = managedFile; } public void OpenFile() { Console.WriteLine("Open file with windows api."); OFSTRUCT info; _handle = WindowsApi.OpenFile(_unmanagedFile, out info, OpenFileStyle.OF_READWRITE); Console.WriteLine("Open file with .Net libray."); _stream = File.Open(_managedFile, FileMode.Append, FileAccess.Write); } #region IDisposable Support private bool disposed = false; protected virtual void Dispose(bool disposing) { if (!disposed) { //Console.WriteLine("string is null? {0}", _stream == null); if (disposing && _stream != null) { Console.WriteLine("Clean up managed resource."); _stream.Dispose(); } Console.WriteLine("Clean up unmanaged resource."); WindowsApi.CloseHandle(_handle); _handle = IntPtr.Zero; disposed = true; } } ~HybridHolder() { Dispose(false); } public void Dispose() { Dispose(true); GC.SuppressFinalize(this); } #endregion }
最后,如果是没有实现 IDisposable interface 的类呢? 例如 byte[], StringBuilder
完全不要插手干预它们的回收, GC 做得很好。
尝试过在析构函数中把一个庞大的 byte[] 设置为 null,唯一的结果是导致它的回收被延迟到下一次 GC 周期。
原因也很简单,每一次引用到会导致它的引用树上的计数加一。。
完整代码见 Github:
https://github.com/IGabriel/IDisposableSample

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

C#是一种现代、面向对象的编程语言,由微软开发并作为.NET框架的一部分。1.C#支持面向对象编程(OOP),包括封装、继承和多态。2.C#中的异步编程通过async和await关键字实现,提高应用的响应性。3.使用LINQ可以简洁地处理数据集合。4.常见错误包括空引用异常和索引超出范围异常,调试技巧包括使用调试器和异常处理。5.性能优化包括使用StringBuilder和避免不必要的装箱和拆箱。

C#.NET应用的测试策略包括单元测试、集成测试和端到端测试。1.单元测试确保代码的最小单元独立工作,使用MSTest、NUnit或xUnit框架。2.集成测试验证多个单元组合的功能,常用模拟数据和外部服务。3.端到端测试模拟用户完整操作流程,通常使用Selenium进行自动化测试。

C#.NET依然重要,因为它提供了强大的工具和库,支持多种应用开发。1)C#结合.NET框架,使开发高效便捷。2)C#的类型安全和垃圾回收机制增强了其优势。3).NET提供跨平台运行环境和丰富的API,提升了开发灵活性。

C#.NETisversatileforbothwebanddesktopdevelopment.1)Forweb,useASP.NETfordynamicapplications.2)Fordesktop,employWindowsFormsorWPFforrichinterfaces.3)UseXamarinforcross-platformdevelopment,enablingcodesharingacrossWindows,macOS,Linux,andmobiledevices.

c#.netissutableforenterprise-levelapplications withemofrosoftecosystemdueToItsStrongTyping,richlibraries,androbustperraries,androbustperformance.however,itmaynotbeidealfoross-platement forment forment forment forvepentment offependment dovelopment toveloperment toveloperment whenrawspeedsportor whenrawspeedseedpolitical politionalitable,

C#在企业级应用、游戏开发、移动应用和Web开发中均有广泛应用。1)在企业级应用中,C#常用于ASP.NETCore开发WebAPI。2)在游戏开发中,C#与Unity引擎结合,实现角色控制等功能。3)C#支持多态性和异步编程,提高代码灵活性和应用性能。

C#在.NET中的编程过程包括以下步骤:1)编写C#代码,2)编译为中间语言(IL),3)由.NET运行时(CLR)执行。C#在.NET中的优势在于其现代化语法、强大的类型系统和与.NET框架的紧密集成,适用于从桌面应用到Web服务的各种开发场景。

C#和.NET通过不断的更新和优化,适应了新兴技术的需求。1)C#9.0和.NET5引入了记录类型和性能优化。2).NETCore增强了云原生和容器化支持。3)ASP.NETCore与现代Web技术集成。4)ML.NET支持机器学习和人工智能。5)异步编程和最佳实践提升了性能。
