首页 后端开发 Python教程 python xapian存储结构

python xapian存储结构

Dec 09, 2016 pm 02:21 PM
python

在项目中为了支持搜索服务,我们使用xapian作为后端的搜索引擎.其因性能良好以及易用受到大家欢迎.下面是基本代码: 

import xapian
import posixpath
def get_db_path():
    XAPIAN_ROOT = '/tmp/'
    xapian_user_database_path = posixpath.join(XAPIAN_ROOT, u'user_index')
    return xapian_user_database_path
def add_document(database, words):
    doc = xapian.Document()
    for w in words:
        doc.add_term(w)
    database.add_document(doc)
def build_index():
    user_database = xapian.WritableDatabase(get_db_path(), xapian.DB_CREATE_OR_OPEN)
    words = ['a', 'b', 'c']
    add_document(user_database, words)
def search(words, offset=0, length=10):
    user_database = xapian.Database(get_db_path())
    enquire = xapian.Enquire(user_database)
    query = xapian.Query(xapian.Query.OP_AND, words)
    enquire.set_query(query)
    return enquire.get_mset(int(offset), int(length))
def _show_q_results(matches):
    print '%i results found.' % matches.get_matches_estimated()
    print 'Results 1 - %i:' % matches.size()
    for match in matches:
        print '%i: %i%% docid=%i [%s]' % (match.rank + 1,
                                          match.percent,
                                          match.docid,
                                          match.document.get_data()
                                          )
if __name__ == '__main__':
    #index 
    build_index()
    
    #search
    _show_q_results(search(['a','b']))
登录后复制

虽然使用起来很简单,但是我一直对于他的存储引擎有些好奇,所以看了一下最新的存储引擎brass的实现.下面是整个数据目录的层次结构:
/tmp/user_index
flintlock
iamchert
postlist.baseA
postlist.baseB
postlist.DB //存储所有term 到 docid的映射.
record.baseA
record.baseB
record.DB //存储所有docid 到 相应的数据的映射
termlist.baseA
termlist.baseB
termlist.DB //存储所有docid 到 相应的 term的映射.

brass存储引擎采用的数据结构是BTree.所以上面每个*.DB都是存储一个BTree的.*.baseA/B则是存储相应的.DB的meta信息.包括这个大的数据文件有哪些数据块已经被使用,哪些空闲的bitmap,以及版本号等等相关信息.
BTree在xapian中表示为N Level.每个level对应于BTree的一层.并且维护这一层的一个cursor.用于指向当前正在访问的某一个数据块,以及数据块中的某一个位置.其中每个数据块的数据结构如下:

from @brass_table.cc
/* A B-tree comprises (a) a base file, containing essential information (Block
   size, number of the B-tree root block etc), (b) a bitmap, the Nth bit of the
   bitmap being set if the Nth block of the B-tree file is in use, and (c) a
   file DB containing the B-tree proper. The DB file is divided into a sequence
   of equal sized blocks, numbered 0, 1, 2 ... some of which are free, some in
   use. Those in use are arranged in a tree.
   Each block, b, has a structure like this:
     R L M T D o1 o2 o3 ... oN <gap> [item] .. [item] .. [item] ...
     <---------- D ----------> <-M->
   And then,
   R = REVISION(b)  is the revision number the B-tree had when the block was
                    written into the DB file.
   L = GET_LEVEL(b) is the level of the block, which is the number of levels
                    towards the root of the B-tree structure. So leaf blocks
                    have level 0 and the one root block has the highest level
                    equal to the number of levels in the B-tree.
   M = MAX_FREE(b)  is the size of the gap between the end of the directory and
                    the first item of data. (It is not necessarily the maximum
                    size among the bits of space that are free, but I can&#39;t
                    think of a better name.)
   T = TOTAL_FREE(b)is the total amount of free space left in b.
   D = DIR_END(b)   gives the offset to the end of the directory.
   o1, o2 ... oN are a directory of offsets to the N items held in the block.
   The items are key-tag pairs, and as they occur in the directory are ordered
   by the keys.
   An item has this form:
           I K key x C tag
             <--K-->
           <------I------>
   A long tag presented through the API is split up into C tags small enough to
   be accommodated in the blocks of the B-tree. The key is extended to include
   a counter, x, which runs from 1 to C. The key is preceded by a length, K,
   and the whole item with a length, I, as depicted above.
登录后复制

上面来自于xapian的注释已经很清楚的说明了每个block的数据构成.除了数据元信息,就是由item组成的小的数据单元.其中每个小的item包括I(整个数据单元的长度),K(数据单元key的长度+x(key标示符)),C(表示对应的这个key有多少个item组成,因为某一个key对应的value太大的话,会进行value切分.所以C就表示总计有多少分.而之前的那个x则表示这个单元是第几份数据,这个如果需要读取这个key的整个大value就可以根据序号x进行合并.),tag就是我们刚才说的key对应的value,只不过xapian把它定义为tag.因为他是一个通用存储结构,所以这样定义也比较说的通.比如说在一颗BTree的非叶子节点tag存储的是下一层数据块的地址.对于叶子节点来说则存储相关的数据.现在整个树的存储结构已经清晰的展示出来了. 

这里面有一个问题比较有意思的是postlist的存储,设想某一个热点词包含有很多很多的docid,比如说有100w个.那么当我们进行增量更新的时候,想要把某个docid从这个term删除掉,那么怎么才能尽快查找到这个docid在哪个数据块中呢?作者采用了term+docid作为BTree的key的方式来解决这个问题.value则是所有的大于这个docid的docid.并且每个块设定一个大小.这样就能让我们能尽快的定位一个docid在哪个block中,而不用读取所有的block然后再去查找了. 

xapian还支持多个reader,单线程writer的方式进行增量更新.采用的类似数据库中的MVCC的方式,这样就不会因为更新把读操作阻塞住了. 

目前作者正在开发replication方式,可以支持增量更新到其他机器.这样就能做到数据可靠(不会应为单机磁盘损坏导致数据丢失)以及高可用性(单机不可用,应用层可以切换到备用机器上)了. 

BTW:我这两天看了xapian devel的邮件列表,虽然没有提交问题,但是看了作者(Olly Betts)对于每个问题都会给出耐心又详尽的答复,他人真的是很好.很是佩服.

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

mysql 是否要付费 mysql 是否要付费 Apr 08, 2025 pm 05:36 PM

MySQL 有免费的社区版和收费的企业版。社区版可免费使用和修改,但支持有限,适合稳定性要求不高、技术能力强的应用。企业版提供全面商业支持,适合需要稳定可靠、高性能数据库且愿意为支持买单的应用。选择版本时考虑的因素包括应用关键性、预算和技术技能。没有完美的选项,只有最合适的方案,需根据具体情况谨慎选择。

mysql安装后怎么使用 mysql安装后怎么使用 Apr 08, 2025 am 11:48 AM

文章介绍了MySQL数据库的上手操作。首先,需安装MySQL客户端,如MySQLWorkbench或命令行客户端。1.使用mysql-uroot-p命令连接服务器,并使用root账户密码登录;2.使用CREATEDATABASE创建数据库,USE选择数据库;3.使用CREATETABLE创建表,定义字段及数据类型;4.使用INSERTINTO插入数据,SELECT查询数据,UPDATE更新数据,DELETE删除数据。熟练掌握这些步骤,并学习处理常见问题和优化数据库性能,才能高效使用MySQL。

mySQL下载完安装不了 mySQL下载完安装不了 Apr 08, 2025 am 11:24 AM

MySQL安装失败的原因主要有:1.权限问题,需以管理员身份运行或使用sudo命令;2.依赖项缺失,需安装相关开发包;3.端口冲突,需关闭占用3306端口的程序或修改配置文件;4.安装包损坏,需重新下载并验证完整性;5.环境变量配置错误,需根据操作系统正确配置环境变量。解决这些问题,仔细检查每个步骤,就能顺利安装MySQL。

mysql下载文件损坏无法安装的修复方案 mysql下载文件损坏无法安装的修复方案 Apr 08, 2025 am 11:21 AM

MySQL下载文件损坏,咋整?哎,下载个MySQL都能遇到文件损坏,这年头真是不容易啊!这篇文章就来聊聊怎么解决这个问题,让大家少走弯路。读完之后,你不仅能修复损坏的MySQL安装包,还能对下载和安装过程有更深入的理解,避免以后再踩坑。先说说为啥下载文件会损坏这原因可多了去了,网络问题是罪魁祸首,下载过程中断、网络不稳定都可能导致文件损坏。还有就是下载源本身的问题,服务器文件本身就坏了,你下载下来当然也是坏的。另外,一些杀毒软件过度“热情”的扫描也可能造成文件损坏。诊断问题:确定文件是否真的损坏

mysql安装后怎么优化数据库性能 mysql安装后怎么优化数据库性能 Apr 08, 2025 am 11:36 AM

MySQL性能优化需从安装配置、索引及查询优化、监控与调优三个方面入手。1.安装后需根据服务器配置调整my.cnf文件,例如innodb_buffer_pool_size参数,并关闭query_cache_size;2.创建合适的索引,避免索引过多,并优化查询语句,例如使用EXPLAIN命令分析执行计划;3.利用MySQL自带监控工具(SHOWPROCESSLIST,SHOWSTATUS)监控数据库运行状况,定期备份和整理数据库。通过这些步骤,持续优化,才能提升MySQL数据库性能。

mysql 需要互联网吗 mysql 需要互联网吗 Apr 08, 2025 pm 02:18 PM

MySQL 可在无需网络连接的情况下运行,进行基本的数据存储和管理。但是,对于与其他系统交互、远程访问或使用高级功能(如复制和集群)的情况,则需要网络连接。此外,安全措施(如防火墙)、性能优化(选择合适的网络连接)和数据备份对于连接到互联网的 MySQL 数据库至关重要。

如何针对高负载应用程序优化 MySQL 性能? 如何针对高负载应用程序优化 MySQL 性能? Apr 08, 2025 pm 06:03 PM

MySQL数据库性能优化指南在资源密集型应用中,MySQL数据库扮演着至关重要的角色,负责管理海量事务。然而,随着应用规模的扩大,数据库性能瓶颈往往成为制约因素。本文将探讨一系列行之有效的MySQL性能优化策略,确保您的应用在高负载下依然保持高效响应。我们将结合实际案例,深入讲解索引、查询优化、数据库设计以及缓存等关键技术。1.数据库架构设计优化合理的数据库架构是MySQL性能优化的基石。以下是一些核心原则:选择合适的数据类型选择最小的、符合需求的数据类型,既能节省存储空间,又能提升数据处理速度

MySQL安装后服务无法启动的解决办法 MySQL安装后服务无法启动的解决办法 Apr 08, 2025 am 11:18 AM

MySQL拒启动?别慌,咱来排查!很多朋友安装完MySQL后,发现服务死活启动不了,心里那个急啊!别急,这篇文章带你从容应对,揪出幕后黑手!读完后,你不仅能解决这个问题,还能提升对MySQL服务的理解,以及排查问题的思路,成为一名更强大的数据库管理员!MySQL服务启动失败,原因五花八门,从简单的配置错误到复杂的系统问题都有可能。咱们先从最常见的几个方面入手。基础知识:服务启动流程简述MySQL服务启动,简单来说,就是操作系统加载MySQL相关的文件,然后启动MySQL守护进程。这其中涉及到配置

See all articles