python gdal教程之:用gdal读取栅格数据
GDAL原生支持超过100种栅格数据类型,涵盖所有主流GIS与RS数据格式,包括
ArcInfo grids, ArcSDE raster, Imagine, Idrisi, ENVI, GRASS, GeoTIFF
HDF4, HDF5
USGS DOQ, USGS DEM
ECW, MrSID
TIFF, JPEG, JPEG2000, PNG, GIF, BMP
完整的支持列表可以参考http://www.gdal.org/formats_list.html
导入GDAL支持库
旧版本(1.5以前):import gdal, gdalconst
新版本(1.6以后):from osgeo import gdal, gdalconst
gdal和gdalconst最好都要导入,其中gdalconst中的常量都加了前缀,力图与其他的module冲突最小。所以对gdalconst你可以直接这样导入:from osgeo.gdalconst import *
GDAL数据驱动,与OGR数据驱动类似,需要先创建某一类型的数据驱动,再创建响应的栅格数据集。
一次性注册所有的数据驱动,但是只能读不能写:gdal.AllRegister()
单独注册某一类型的数据驱动,这样的话可以读也可以写,可以新建数据集:
driver = gdal.GetDriverByName('HFA')
driver.Register()
打开已有的栅格数据集:
fn = 'aster.img'
ds = gdal.Open(fn, GA_ReadOnly)
if ds is None:
print 'Could not open ' + fn
sys.exit(1)
读取栅格数据集的x方向像素数,y方向像素数,和波段数
cols = ds.RasterXSize
rows = ds.RasterYSize
bands = ds.RasterCount
注意后面没有括号,因为他们是属性(properties)不是方法(methods)
读取地理坐标参考信息(georeference info)
GeoTransform是一个list,存储着栅格数据集的地理坐标信息
adfGeoTransform[0] /* top left x 左上角x坐标*/
adfGeoTransform[1] /* w--e pixel resolution 东西方向上的像素分辨率*/
adfGeoTransform[2] /* rotation, 0 if image is "north up" 如果北边朝上,地图的旋转角度*/
adfGeoTransform[3] /* top left y 左上角y坐标*/
adfGeoTransform[4] /* rotation, 0 if image is "north up" 如果北边朝上,地图的旋转角度*/
adfGeoTransform[5] /* n-s pixel resolution 南北方向上的像素分辨率*/
注意栅格数据集的坐标一般都是以左上角为基准的。
下面的例子是从一个栅格数据集中取出Geotransform作为一个list,然后读取其中的数据
geotransform = ds.GetGeoTransform()
originX = geotransform[0]
originY = geotransform[3]originY = geotransform[3]
pixelWidth = geotransform[1]
pixelHeight = geotransform[5]
计算某一坐标对应像素的相对位置(pixel offset),也就是该坐标与左上角的像素的相对位置,按像素数计算,计算公式如下:
xOffset = int((x – originX) / pixelWidth)
yOffset = int((y – originY) / pixelHeight)
读取某一像素点的值,需要分两步
首先读取一个波段(band):GetRasterBand(
然后用ReadAsArray(
band = ds.GetRasterBand(1)
data = band.ReadAsArray(xOffset, yOffset, 1, 1)
如果想一次读取一整张图,那么将offset都设定为0,size则设定为整个图幅的size,例如:
data = band.ReadAsArray(0, 0, cols, rows)
但是要注意,从data中读取某一像素的值,必须要用data[yoff, xoff]。注意不要搞反了。数学中的矩阵是[row,col],而这里恰恰相反!这里面row对应y轴,col对应x轴。
注意在适当的时候释放内存,例如band = None 或者dataset = None。尤其当图很大的时候
如何更有效率的读取栅格数据?显然一个一个的读取效率非常低,将整个栅格数据集都塞进二维数组也不是个好办法,因为这样占的内存还是很多。更好的方法是按块(block)来存取数据,只把要用的那一块放进内存。本周的样例代码中有一个utils模块,可以读取block大小。
例如:
import utils
blockSize = utils.GetBlockSize(band)
xBlockSize = blockSize[0]
yBlockSize = blockSize[1]
平铺(tiled),即栅格数据按block存储。有的格式,例如GeoTiff没有平铺,一行是一个block。Erdas imagine格式则按64x64像素平铺。
如果一行是一个block,那么按行读取是比较节省资源的。
如果是平铺的数据结构,那么设定ReadAsArray()的参数值,让它一次只读入一个block,就是效率最高的方法了。例如:
rows = 13, cols = 11, xBSize = 5, yBSize = 5
for i in range(0, rows, yBSize):
if i + yBSize < rows:
numRows = yBSize
else:
numRows = rows – i
for j in range(0, cols, xBSize):
if j + xBSize < cols:
numCols = xBSize
else:
numCols = colsnumCols = cols – j
data = band.ReadAsArray(j, i, numCols, numRows)
这一段代码具有通用性,可以时常拿来用的。
下面介绍一点二维数组的处理技巧
这里要用到两个库,Numeric和numpy。Numeric比较老了,FWTools用它。自己安装配置的话还是配功能更强的numpy。
数据类型转换:
data = band.ReadAsArray(j, i, nCols, nRows)
data = data.astype(Numeric.Float) # Numeric
data = data.astype(numpy.float) # numpy
或者简单点只写一句
data = band.ReadAsArray(j, i, nCols, nRows).astype(Numeric.Float)
掩膜mask
这是Numeric和numpy库的功能,输入一个数组和条件,输出一个二值数组。例如
mask = Numeric.greater(data, 0)mask = Numeric.greater(data, 0)
>>> a = Numeric.array([0, 4, 6, 0, 2])
>>> print a
[0 4 6 0 2]
>>> mask = Numeric.greater(a, 0)
>>> print mask
[0 1 1 0 1]
数组求和
>>> a = Numeric.array([0, 4, 6, 0, 2])
>>> print a>>> print a
[0 4 6 0 2]
>>> print Numeric.sum(a)
12
如果是二维数组,那sum就会返回一个一维数组
>>> b = Numeric.array([a, [5, 10, 0, 3, 0]])
>>> print b
[[ 0 4 6 0 2]
[ 5 10 0 3 0]]
>>> print Numeric.sum(b)>>> print Numeric.sum(b)
[ 5 14 6 3 2]
所以,二维数组的求和就要这样
>>> print Numeric.sum(Numeric.sum(b))
30
这里有一个小技巧,统计大于0的像素个数,可以联合运用mask和sum两个函数
>>> print a
[0 4 6 0 2]
>>> mask = Numeric.greater(a, 0)
>>> print mask
[0 1 1 0 1]
>>> print Numeric.sum(mask)
3
以上就是python gdal教程之:用gdal读取栅格数据的内容,更多相关内容请关注PHP中文网(www.php.cn)!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。
