PHP二叉树(一):二叉搜索树
关于二叉搜索树的原理网上的资源就挺多的,而且情况有点小复杂,所以在这里我就不再陈述了,直接上代码吧:
#bst.php 文件 <!--?php /** * author:zhongjin * time:2016/10/20 11:53 * description: 二叉查找树 */ //结点 class Node { public $key; public $parent; public $left; public $right; public function __construct($key) { $this--->key = $key; $this->parent = NULL; $this->left = NULL; $this->right = NULL; } } //二叉搜索树 class Bst { public $root; /** * 初始化树结构 * @param $arr 初始化树结构的数组 * @return null */ public function init($arr) { $this->root = new Node($arr[0]); for ($i = 1; $i < count($arr); $i++) { $this->Insert($arr[$i]); } } /** * (对内)中序遍历 * @param $root (树或子树的)根节点 * @return null */ private function mid_order($root) { if ($root != NULL) { $this->mid_order($root->left); echo $root->key . " "; $this->mid_order($root->right); } } /** * (对外)中序遍历 * @param null * @return null */ public function MidOrder() { $this->mid_order($this->root); } /** * 查找树中是否存在$key对应的节点 * @param $key 待搜索数字 * @return $key对应的节点 */ function search($key) { $current = $this->root; while ($current != NULL) { if ($current->key == $key) { return $current; } elseif ($current->key > $key) { $current = $current->left; } else { $current = $current->right; } } return $current; } /** * 查找树中的最小关键字 * @param $root 根节点 * @return 最小关键字对应的节点 */ function search_min($root) { $current = $root; while ($current->left != NULL) { $current = $current->left; } return $current; } /** * 查找树中的最大关键字 * @param $root 根节点 * @return 最大关键字对应的节点 */ function search_max($root) { $current = $root; while ($current->right != NULL) { $current = $current->right; } return $current; } /** * 查找某个$key在中序遍历时的直接前驱节点 * @param $x 待查找前驱节点的节点引用 * @return 前驱节点引用 */ function predecessor($x) { //左子节点存在,直接返回左子节点的最右子节点 if ($x->left != NULL) { return $this->search_max($x->left); } //否则查找其父节点,直到当前结点位于父节点的右边 $p = $x->parent; //如果x是p的左孩子,说明p是x的后继,我们需要找的是p是x的前驱 while ($p != NULL && $x == $p->left) { $x = $p; $p = $p->parent; } return $p; } /** * 查找某个$key在中序遍历时的直接后继节点 * @param $x 待查找后继节点的节点引用 * @return 后继节点引用 */ function successor($x) { if ($x->left != NULL) { return $this->search_min($x->right); } $p = $x->parent; while ($p != NULL && $x == $p->right) { $x = $p; $p = $p->parent; } return $p; } /** * 将$key插入树中 * @param $key 待插入树的数字 * @return null */ function Insert($key) { if (!is_null($this->search($key))) { throw new Exception('结点' . $key . '已存在,不可插入!'); } $root = $this->root; $inode = new Node($key); $current = $root; $prenode = NULL; //为$inode找到合适的插入位置 while ($current != NULL) { $prenode = $current; if ($current->key > $inode->key) { $current = $current->left; } else { $current = $current->right; } } $inode->parent = $prenode; //如果$prenode == NULL, 则证明树是空树 if ($prenode == NULL) { $this->root = $inode; } else { if ($inode->key < $prenode->key) { $prenode->left = $inode; } else { $prenode->right = $inode; } } //return $root; } /** * 在树中删除$key对应的节点 * @param $key 待删除节点的数字 * @return null */ function Delete($key) { if (is_null($this->search($key))) { throw new Exception('结点' . $key . "不存在,删除失败!"); } $root = $this->root; $dnode = $this->search($key); if ($dnode->left == NULL || $dnode->right == NULL) { #如果待删除结点无子节点或只有一个子节点,则c = dnode $c = $dnode; } else { #如果待删除结点有两个子节点,c置为dnode的直接后继,以待最后将待删除结点的值换为其后继的值 $c = $this->successor($dnode); } //无论前面情况如何,到最后c只剩下一边子结点 if ($c->left != NULL) { $s = $c->left; } else { $s = $c->right; } if ($s != NULL) { #将c的子节点的父母结点置为c的父母结点,此处c只可能有1个子节点,因为如果c有两个子节点,则c不可能是dnode的直接后继 $s->parent = $c->parent; } if ($c->parent == NULL) { #如果c的父母为空,说明c=dnode是根节点,删除根节点后直接将根节点置为根节点的子节点, 此处dnode是根节点,且拥有两个子节点,则c是dnode的后继结点,c的父母就不会为空,就不会进入这个if $this->root = $s; } else if ($c == $c->parent->left) { #如果c是其父节点的左右子节点,则将c父母的左右子节点置为c的左右子节点 $c->parent->left = $s; } else { $c->parent->right = $s; } #如果c!=dnode,说明c是dnode的后继结点,交换c和dnode的key值 if ($c != $dnode) { $dnode->key = $c->key; } #返回根节点 // return $root; } /** * (对内)获取树的深度 * @param $root 根节点 * @return 树的深度 */ private function getdepth($root) { if ($root == NULL) { return 0; } $dl = $this->getdepth($root->left); $dr = $this->getdepth($root->right); return ($dl > $dr ? $dl : $dr) + 1; } /** * (对外)获取树的深度 * @param null * @return null */ public function Depth() { return $this->getdepth($this->root); } }
调试的时候你们可以调用中序遍历来做,我在上一篇博客中提供了PHP实现的二叉树图形化,有了视觉上的帮助就能更好的帮助我们进行调试,详细大家可以访问我的上一篇博客:《利用PHP实现二叉树的图形显示》
以上就是PHP二叉树(一):二叉搜索树的内容,更多相关内容请关注PHP中文网(www.php.cn)!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

PHP 8.4 带来了多项新功能、安全性改进和性能改进,同时弃用和删除了大量功能。 本指南介绍了如何在 Ubuntu、Debian 或其衍生版本上安装 PHP 8.4 或升级到 PHP 8.4

如果您是一位经验丰富的 PHP 开发人员,您可能会感觉您已经在那里并且已经完成了。您已经开发了大量的应用程序,调试了数百万行代码,并调整了一堆脚本来实现操作

Visual Studio Code,也称为 VS Code,是一个免费的源代码编辑器 - 或集成开发环境 (IDE) - 可用于所有主要操作系统。 VS Code 拥有针对多种编程语言的大量扩展,可以轻松编写

JWT是一种基于JSON的开放标准,用于在各方之间安全地传输信息,主要用于身份验证和信息交换。1.JWT由Header、Payload和Signature三部分组成。2.JWT的工作原理包括生成JWT、验证JWT和解析Payload三个步骤。3.在PHP中使用JWT进行身份验证时,可以生成和验证JWT,并在高级用法中包含用户角色和权限信息。4.常见错误包括签名验证失败、令牌过期和Payload过大,调试技巧包括使用调试工具和日志记录。5.性能优化和最佳实践包括使用合适的签名算法、合理设置有效期、

字符串是由字符组成的序列,包括字母、数字和符号。本教程将学习如何使用不同的方法在PHP中计算给定字符串中元音的数量。英语中的元音是a、e、i、o、u,它们可以是大写或小写。 什么是元音? 元音是代表特定语音的字母字符。英语中共有五个元音,包括大写和小写: a, e, i, o, u 示例 1 输入:字符串 = "Tutorialspoint" 输出:6 解释 字符串 "Tutorialspoint" 中的元音是 u、o、i、a、o、i。总共有 6 个元

本教程演示了如何使用PHP有效地处理XML文档。 XML(可扩展的标记语言)是一种用于人类可读性和机器解析的多功能文本标记语言。它通常用于数据存储

静态绑定(static::)在PHP中实现晚期静态绑定(LSB),允许在静态上下文中引用调用类而非定义类。1)解析过程在运行时进行,2)在继承关系中向上查找调用类,3)可能带来性能开销。

PHP的魔法方法有哪些?PHP的魔法方法包括:1.\_\_construct,用于初始化对象;2.\_\_destruct,用于清理资源;3.\_\_call,处理不存在的方法调用;4.\_\_get,实现动态属性访问;5.\_\_set,实现动态属性设置。这些方法在特定情况下自动调用,提升代码的灵活性和效率。
