JS中常见排序算法详解
有句话怎么说来着:
雷锋推倒雷峰塔,Java implements JavaScript.
当年,想凭借抱Java大腿火一把而不惜把自己名字给改了的JavaScript(原名LiveScript),如今早已光芒万丈。node JS的出现更是让JavaScript可以前后端通吃。虽然Java依然制霸企业级软件开发领域(C/C + +的大神们不要打我。。。),但在Web的江湖,JavaScript可谓风头无两,坐上了头把交椅。
然而,在传统的计算机算法和数据结构领域,大多数专业教材和书籍的默认语言都是Java或者C/C+ +。这给最近想恶补算法和数据结构知识的我造成了一定困扰,因为我想寻找一本以JavaScript为默认语言的算法书籍。当我了解到O’REILLY家的动物丛书系列里有一本叫做《数据结构与算法JavaScript描述》时,便兴奋的花了两天时间把这本书从头到尾读了一遍。它是一本很好的针对前端开发者们的入门算法书籍,可是,它有一个很大的缺陷,就是里面有很多明显的小错误,明显到就连我这种半路出家的程序猿都能一眼看出来。还有一个问题是,很多重要的算法和数据结构知识并没有在这本书里被提到。这些问题对于作为一个晚期强迫症患者的我来说简直不能忍。于是乎,一言不合我就决定自己找资料总结算法。那么,我就从算法领域里最基础的知识点——排序算法总结起好了。
我相信以下的代码里一定会有某些bug或错误或语法不规范等问题是我自己无法发现的,所以敬请各位大神能够指出错误,因为只有在不断改错的道路上我才能取得长久的进步。
十大经典算法
名词解释:
n:数据规模
k:“桶”的个数
In-place:占用常数内存,不占用额外内存
Out-place:占用额外内存
稳定性:排序后2个相等键值的顺序和排序之前它们的顺序相同
冒泡排序
作为最简单的排序算法之一,冒泡排序给我的感觉就像Abandon在单词书里出现的感觉一样,每次都在第一页第一位,所以最熟悉。。。冒泡排序还有一种优化算法,就是立一个flag,当在一趟序列遍历中元素没有发生交换,则证明该序列已经有序。但这种改进对于提升性能来说并没有什么太大作用。。。
什么时候最快
当输入的数据已经是正序时(都已经是正序了,我还要你冒泡排序有何用啊。。。。)
什么时候最慢
当输入的数据是反序时(写一个for循环反序输出数据不就行了,干嘛要用你冒泡排序呢,我是闲的吗。。。)
冒泡排序动图演示
JavaScript代码实现
function bubbleSort(arr) { var len = arr.length; for (var i = 0; i < len; i++) { for (var j = 0; j < len - 1 - i; j++) { if (arr[j] > arr[j+1]) { //相邻元素两两对比 var temp = arr[j+1]; //元素交换 arr[j+1] = arr[j]; arr[j] = temp; } } } return arr; }
选择排序
表现最稳定的排序算法之一,因为无论什么数据进去都是O(n²)的时间复杂度。。。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。
选择排序动图演示
JavaScript代码实现
function selectionSort(arr) { var len = arr.length; var minIndex, temp; for (var i = 0; i < len - 1; i++) { minIndex = i; for (var j = i + 1; j < len; j++) { if (arr[j] < arr[minIndex]) { //寻找最小的数 minIndex = j; //将最小数的索引保存 } } temp = arr[i]; arr[i] = arr[minIndex]; arr[minIndex] = temp; } return arr;}
插入排序
插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。当然,如果你说你打扑克牌摸牌的时候从来不按牌的大小整理牌,那估计这辈子你对插入排序的算法都不会产生任何兴趣了。。。
插入排序和冒泡排序一样,也有一种优化算法,叫做拆半插入。对于这种算法,得了懒癌的我就套用教科书上的一句经典的话吧:感兴趣的同学可以在课后自行研究。。。
插入排序动图演示
JavaScript代码实现
function insertionSort(arr) { var len = arr.length; var preIndex, current; for (var i = 1; i < len; i++) { preIndex = i - 1; current = arr[i]; while(preIndex >= 0 && arr[preIndex] > current) { arr[preIndex+1] = arr[preIndex]; preIndex--; } arr[preIndex+1] = current; } return arr;}
希尔排序
希尔排序是插入排序的一种更高效率的实现。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义间隔序列。动态定义间隔序列的算法是《算法(第4版》的合著者Robert Sedgewick提出的。在这里,我就使用了这种方法。
JavaScript代码实现
function shellSort(arr) { var len = arr.length, temp, gap = 1; while(gap < len/3) { //动态定义间隔序列 gap =gap*3+1; } for (gap; gap > 0; gap = Math.floor(gap/3)) { for (var i = gap; i < len; i++) { temp = arr[i]; for (var j = i-gap; j >= 0 && arr[j] > temp; j-=gap) { arr[j+gap] = arr[j]; } arr[j+gap] = temp; } } return arr;}
归并排序
作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:
●自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第2种方法)
●自下而上的迭代
在《数据结构与算法JavaScript描述》中,作者给出了自下而上的迭代方法。但是对于递归法,作者却认为:
However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.
然而,在 JavaScript 中这种方式不太可行,因为这个算法的递归深度对它来讲太深了。
说实话,我不太理解这句话。意思是JavaScript编译器内存太小,递归太深容易造成内存溢出吗?还望有大神能够指教。
和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(n log n)的时间复杂度。代价是需要额外的内存空间。
归并排序动图演示
归并排序JavaScript代码实现:
function mergeSort(arr) { //采用自上而下的递归方法 var len = arr.length; if(len < 2) { return arr; } var middle = Math.floor(len / 2), left = arr.slice(0, middle), right = arr.slice(middle); return merge(mergeSort(left), mergeSort(right));}function merge(left, right){ var result = []; while (left.length && right.length) { if (left[0] <= right[0]) { result.push(left.shift()); } else { result.push(right.shift()); } } while (left.length) result.push(left.shift()); while (right.length) result.push(right.shift()); return result;}
快速排序
快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。
快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高! 它是处理大数据最快的排序算法之一了。虽然Worst Case的时间复杂度达到了O(n²),但是人家就是优秀,在大多数情况下都比平均时间复杂度为O(n log n) 的排序算法表现要更好,可是这是为什么呢,我也不知道。。。好在我的强迫症又犯了,查了N多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:
快速排序的最坏运行情况是O(n²),比如说顺序数列的快排。但它的平摊期望时间是O(n log n) ,且O(n log n)记号中隐含的常数因子很小,比复杂度稳定等于O(n log n)的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。
快速排序动图演示
快速排序JavaScript代码实现:
function quickSort(arr, left, right) { var len = arr.length, partitionIndex, left = typeof left != 'number' ? 0 : left, right = typeof right != 'number' ? len - 1 : right; if (left < right) { partitionIndex = partition(arr, left, right); quickSort(arr, left, partitionIndex-1); quickSort(arr, partitionIndex+1, right); } return arr;}function partition(arr, left ,right) { //分区操作 var pivot = left, //设定基准值(pivot) index = pivot + 1; for (var i = index; i <= right; i++) { if (arr[i] < arr[pivot]) { swap(arr, i, index); index++; } } swap(arr, pivot, index - 1); return index-1;}function swap(arr, i, j) { var temp = arr[i]; arr[i] = arr[j]; arr[j] = temp;}
堆排序
堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:
1.大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列
2.小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列
堆排序动图演示
堆排序JavaScript代码实现:
var len; //因为声明的多个函数都需要数据长度,所以把len设置成为全局变量function buildMaxHeap(arr) { //建立大顶堆 len = arr.length; for (var i = Math.floor(len/2); i >= 0; i--) { heapify(arr, i); }}function heapify(arr, i) { //堆调整 var left = 2 * i + 1, right = 2 * i + 2, largest = i; if (left < len && arr[left] > arr[largest]) { largest = left; } if (right < len && arr[right] > arr[largest]) { largest = right; } if (largest != i) { swap(arr, i, largest); heapify(arr, largest); }}function swap(arr, i, j) { var temp = arr[i]; arr[i] = arr[j]; arr[j] = temp;}function heapSort(arr) { buildMaxHeap(arr); for (var i = arr.length-1; i > 0; i--) { swap(arr, 0, i); len--; heapify(arr, 0); } return arr;}
计数排序
计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。
计数排序动图演示
计数排序JavaScript代码实现:
function countingSort(arr, maxValue) { var bucket = new Array(maxValue+1), sortedIndex = 0; arrLen = arr.length, bucketLen = maxValue + 1; for (var i = 0; i < arrLen; i++) { if (!bucket[arr[i]]) { bucket[arr[i]] = 0; } bucket[arr[i]]++; } for (var j = 0; j < bucketLen; j++) { while(bucket[j] > 0) { arr[sortedIndex++] = j; bucket[j]--; } } return arr;}
桶排序
桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。
为了使桶排序更加高效,我们需要做到这两点:
1.在额外空间充足的情况下,尽量增大桶的数量
2.使用的映射函数能够将输入的N个数据均匀的分配到K个桶中
同时,对于桶中元素的排序,选择何种比较排序算法对于性能的影响至关重要。
什么时候最快
当输入的数据可以均匀的分配到每一个桶中
什么时候最慢
当输入的数据被分配到了同一个桶中
桶排序JavaScript代码实现:
function bucketSort(arr, bucketSize) { if (arr.length === 0) { return arr; } var i; var minValue = arr[0]; var maxValue = arr[0]; for (i = 1; i < arr.length; i++) { if (arr[i] < minValue) { minValue = arr[i]; //输入数据的最小值 } else if (arr[i] > maxValue) { maxValue = arr[i]; //输入数据的最大值 } } //桶的初始化 var DEFAULT_BUCKET_SIZE = 5; //设置桶的默认数量为5 bucketSize = bucketSize || DEFAULT_BUCKET_SIZE; var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1; var buckets = new Array(bucketCount); for (i = 0; i < buckets.length; i++) { buckets[i] = []; } //利用映射函数将数据分配到各个桶中 for (i = 0; i < arr.length; i++) { buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]); } arr.length = 0; for (i = 0; i < buckets.length; i++) { insertionSort(buckets[i]); //对每个桶进行排序,这里使用了插入排序 for (var j = 0; j < buckets[i].length; j++) { arr.push(buckets[i][j]); } } return arr;}
基数排序
基数排序有两种方法
1.MSD 从高位开始进行排序
2.LSD 从低位开始进行排序
基数排序 vs 计数排序 vs 桶排序
这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:
●基数排序:根据键值的每位数字来分配桶
●计数排序:每个桶只存储单一键值
●桶排序:每个桶存储一定范围的数值
LSD基数排序动图演示:
基数排序JavaScript代码实现:
//LSD Radix Sortvar counter = [];function radixSort(arr, maxDigit) { var mod = 10; var dev = 1; for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) { for(var j = 0; j < arr.length; j++) { var bucket = parseInt((arr[j] % mod) / dev); if(counter[bucket]==null) { counter[bucket] = []; } counter[bucket].push(arr[j]); } var pos = 0; for(var j = 0; j < counter.length; j++) { var value = null; if(counter[j]!=null) { while ((value = counter[j].shift()) != null) { arr[pos++] = value; } } } } return arr;}
写在最后
排序算法实在是博大精深,还有hin多hin多我没有总结到或者我自己还没弄明白的算法,仅仅是总结这十种排序算法都把我写哭了。。。
因此,以后如果我掌握了更多的排序姿势,我一定还会回来的!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

写在前面&笔者的个人理解目前,在整个自动驾驶系统当中,感知模块扮演了其中至关重要的角色,行驶在道路上的自动驾驶车辆只有通过感知模块获得到准确的感知结果后,才能让自动驾驶系统中的下游规控模块做出及时、正确的判断和行为决策。目前,具备自动驾驶功能的汽车中通常会配备包括环视相机传感器、激光雷达传感器以及毫米波雷达传感器在内的多种数据信息传感器来收集不同模态的信息,用于实现准确的感知任务。基于纯视觉的BEV感知算法因其较低的硬件成本和易于部署的特点,以及其输出结果能便捷地应用于各种下游任务,因此受到工业

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

C++sort函数底层采用归并排序,其复杂度为O(nlogn),并提供不同的排序算法选择,包括快速排序、堆排序和稳定排序。

人工智能(AI)与执法领域的融合为犯罪预防和侦查开辟了新的可能性。人工智能的预测能力被广泛应用于CrimeGPT(犯罪预测技术)等系统,用于预测犯罪活动。本文探讨了人工智能在犯罪预测领域的潜力、目前的应用情况、所面临的挑战以及相关技术可能带来的道德影响。人工智能和犯罪预测:基础知识CrimeGPT利用机器学习算法来分析大量数据集,识别可以预测犯罪可能发生的地点和时间的模式。这些数据集包括历史犯罪统计数据、人口统计信息、经济指标、天气模式等。通过识别人类分析师可能忽视的趋势,人工智能可以为执法机构

01前景概要目前,难以在检测效率和检测结果之间取得适当的平衡。我们就研究出了一种用于高分辨率光学遥感图像中目标检测的增强YOLOv5算法,利用多层特征金字塔、多检测头策略和混合注意力模块来提高光学遥感图像的目标检测网络的效果。根据SIMD数据集,新算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在检测结果和速度之间实现了更好的平衡。02背景&动机随着远感技术的快速发展,高分辨率光学远感图像已被用于描述地球表面的许多物体,包括飞机、汽车、建筑物等。目标检测在远感图像的解释中

在我们的工作中,经常会用到wps软件,wps软件处理数据的方式方法是非常多的,而且函数功能也是非常强大的,我们经常用函数来求平均值,求汇总等,可以说只要是统计数据能用的方法,wps软件库里都已经为大家准备好了,下面我们要介绍的是wps怎么排序成绩高低的操作步骤,看完以后大家可以借鉴一下经验。1、首先打开需要排名的表格。如下图所示。 2、然后输入公式=rank(B2,B2:B5,0),一定要输入0。如下图所示。 3、输入完公式以后,按下电脑键盘上的F4键,这步操作是为了让相对引用变为绝对引用。

一、58画像平台建设背景首先和大家分享下58画像平台的建设背景。1.传统的画像平台传统的思路已经不够,建设用户画像平台依赖数据仓库建模能力,整合多业务线数据,构建准确的用户画像;还需要数据挖掘,理解用户行为、兴趣和需求,提供算法侧的能力;最后,还需要具备数据平台能力,高效存储、查询和共享用户画像数据,提供画像服务。业务自建画像平台和中台类型画像平台主要区别在于,业务自建画像平台服务单条业务线,按需定制;中台平台服务多条业务线,建模复杂,提供更为通用的能力。2.58中台画像建设的背景58的用户画像

excel的排序方法:1、单列排序;2、多列排序;3、自定义排序。详细介绍:1、单列排序,是最常见的排序方式,它按照选定的某一列进行排序;2、多列排序,是指按照多个列的数据进行排序,通常是在先按照某一列排序的基础上,再按照另一列进行排序;3、自定义排序,允许用户根据自己的需要定义排序顺序。
