JavaScript 中匿名函数的递归调用的代码详细介绍
不管是什么编程语言,相信稍微写过几行代码的同学,对递归都不会陌生。 以一个简单的阶乘计算为例:
function factorial(n) { if (n <= 1) { return 1; } else { return n * factorial(n-1); } }
我们可以看出,递归就是在函数内部调用对自身的调用。 那么问题来了,我们知道在Javascript中,有一类函数叫做匿名函数,没有名称,怎么调用呢?当然你可以说,可以把匿名函数赋值给一个常量:
const factorial = function(n){ if (n <= 1) { return 1; } else { return n * factorial(n-1); } }
这当然是可以的。但是对于一些像,函数编写时并不知道自己将要赋值给一个明确的变量的情况时,就会遇到麻烦了。如:
(function(f){ f(10); })(function(n){ if (n <= 1) { return 1; } else { return n * factorial(n-1);//太依赖于上下文变量名 } }) //Uncaught ReferenceError: factorial is not defined(…)
那么存不存在一种完全不需要这种给予准确函数名(函数引用变量名)的方式呢?
arguments.callee
我们知道在任何一个function
内部,都可以访问到一个叫做arguments
的变量。
(function(){console.dir(arguments)})(1,2)
打印出这个arguments
变量的细节,可以看出他是Arguments
的一个实例,而且从数据结构上来讲,他是一个类数组。他除了类数组的元素成员和length
属性外,还有一个callee
方法。 那么这个callee
方法是做什么的呢?我们来看下MDN
callee
是arguments
对象的属性。在该函数的函数体内,它可以指向当前正在执行的函数。当函数是匿名函数时,这是很有用的, 比如没有名字的函数表达式 (也被叫做”匿名函数”)。
哈哈,很明显这就是我们想要的。接下来就是:
(function(f){ console.log(f(10)); })(function(n){ if (n <= 1) { return 1; } else { return n * arguments.callee(n-1); } }) //output: 3628800
但是还有一个问题,MDN的文档里明确指出
警告
:在 ECMAScript 第五版 (ES5) 的 严格模式 中禁止使用 arguments.callee()。
哎呀,原来在ES5的use strict;
中不给用啊,那么在ES6中,我们换个ES6的arrow function
写写看:
((f) => console.log(f(10)))( (n) => n <= 1? 1: arguments.callee(n-1)) //Uncaught ReferenceError: arguments is not defined(…)
有一定ES6基础的同学,估计老早就想说了,箭头函数就是个简写形式的函数表达式,并且它拥有词法作用域的this
值(即不会新产生自己作用域下的this
, arguments
, super
和 new.target
等对象),且都是匿名的。
那怎么办呢?嘿嘿,我们需要借助一点FP的思想了。
Y组合子
关于Y Combinator
的文章可谓数不胜数,这个由师从希尔伯特的著名逻辑学家Haskell B.Curry(Haskell语言就是以他命名的,而函数式编程语言里面的Curry手法也是以他命名)“发明”出来的组合算子(Haskell是研究组合逻辑(combinatory logic)的)仿佛有种神奇的魔力,它能够算出给定lambda表达式(函数)的不动点。从而使得递归成为可能。
这里需要告知一个概念不动点组合子
:
不动点组合子(英语:Fixed-point combinator,或不动点算子)是计算其他函数的一个不动点的高阶函数。
函数f的不动点是一个值x使得
f(x) = x
。例如,0和1是函数 f(x) = x^2 的不动点,因为 0^2 = 0而 1^2 = 1。鉴于一阶函数(在简单值比如整数上的函数)的不动点是个一阶值,高阶函数f的不动点是另一个函数g使得f(g) = g
。那么,不动点算子是任何函数fix使得对于任何函数f都有
f(fix(f)) = fix(f)
. 不动点组合子允许定义匿名的递归函数。它们可以用非递归的lambda抽象来定义.
在无类型lambda演算中众所周知的(可能是最简单的)不动点组合子叫做Y组合子。
接下来,我们通过一定的演算推到下这个Y组合子。
// 首先我们定义这样一个可以用作求阶乘的递归函数 const fact = (n) => n<=1?1:n*fact(n-1) console.log(fact(5)) //120 // 既然不让这个函数有名字,我们就先给这个递归方法一个叫做self的代号 // 首先是一个接受这个递归函数作为参数的一个高阶函数 const fact_gen = (self) => (n) => n<=1?1:n*self(n-1) console.log(fact_gen(fact)(5)) //120 // 我们是将递归方法和参数n,都传入递归方法,得到这样一个函数 const fact1 = (self, n) => n<=1?1:n*self(self, n-1) console.log(fact1(fact1, 5)) //120 // 我们将fact1 柯理化,得到fact2 const fact2 = (self) => (n) => n<=1?1:n*self(self)(n-1) console.log(fact2(fact2)(5)) //120 // 惊喜的事发生了,如果我们将self(self)看做一个整体 // 作为参数传入一个新的函数: (g)=> n<= 1? 1: n*g(n-1) const fact3 = (self) => (n) => ((g)=>n <= 1?1:n*g(n-1))(self(self)) console.log(fact3(fact3)(5)) //120 // fact3 还有一个问题是这个新抽离出来的函数,是上下文有关的 // 他依赖于上文的n, 所以我们将n作为新的参数 // 重新构造出这么一个函数: (g) => (m) => m<=1?1:m*g(m-1) const fact4 = (self) => (n) => ((g) => (m) => m<=1?1:m*g(m-1))(self(self))(n) console.log(fact4(fact4)(5)) // 很明显fact4中的(g) => (m) => m<=1?1:m*g(m-1) 就是 fact_gen // 这就很有意思啦,这个fact_gen上下文无关了, 可以作为参数传入了 const weirdFunc = (func_gen) => (self) => (n) => func_gen(self(self))(n) console.log(weirdFunc(fact_gen)(weirdFunc(fact_gen))(5)) //120 // 此时我们就得到了一种Y组合子的形式了 const Y_ = (gen) => (f) => (n)=> gen(f(f))(n) // 构造一个阶乘递归也很easy了 const factorial = Y_(fact_gen) console.log(factorial(factorial)(5)) //120 // 但上面这个factorial并不是我们想要的 // 只是一种fact2,fact3,fact4的形式 // 我们肯定希望这个函数的调用是factorial(5) // 没问题,我们只需要把定义一个 f' = f(f) = (f)=>f(f) // eg. const factorial = fact2(fact2) const Y = gen => n => (f=>f(f))(gen)(n) console.log(Y(fact2)(5)) //120 console.log(Y(fact3)(5)) //120 console.log(Y(fact4)(5)) //120
推导到这里,是不是已经感觉到脊背嗖凉了一下,反正笔者我第一次接触在康托尔、哥德尔、图灵——永恒的金色对角线这篇文章里接触到的时候,整个人瞬间被这种以数学语言去表示程序的方式所折服。
来,我们回忆下,我们最终是不是得到了一个不定点算子,这个算子可以找出一个高阶函数的不动点f(Y(f)) = Y(f)
。 将一个函数传入一个算子(函数),得到一个跟自己功能一样,但又并不是自己的函数,这个说法有些拗口,但又味道十足。
好了,我们回到最初的问题,怎么完成匿名函数的递归呢?有了Y组合子就很简单了:
/*求不动点*/ (f => f(f)) /*以不动点为参数的递归函数*/ (fact => n => n <= 1 ? 1 : n * fact(fact)(n - 1)) /*递归函数参数*/ (5) // 120
曾经看到过一些说法是”最让人沮丧是,当你推导出它(Y组合子)后,完全没法儿通过只看它一眼就说出它到底是想干嘛”,而我恰恰认为这就是函数式编程的魅力,也是数学的魅力所在,精简优雅的公式,背后隐藏着复杂有趣的推导过程。
总结
务实点儿讲,匿名函数的递归调用,在日常的js开发中,用到的真的很少。把这个问题拿出来讲,主要是想引出对arguments
的一些讲解和对Y组合子
这个概念的一个普及。
但既然讲都讲了,我们真的用到的话,该怎么选择呢?来,我们喜闻乐见的benchmark下: 分别测试:
// fact fact(10) // Y (f => f(f))(fact => n => n <= 1 ? 1 : n * fact(fact)(n - 1))(10) // Y' const fix = (f) => f(f) const ygen = fix(fact2) ygen(10) // callee (function(n) {n<=1?1:n*arguments.callee(n-1)})(10)
环境:Macbook pro(2.5 GHz Intel Core i7), node-5.0.0(V8:4.6.85.28) 结果:
fact x 18,604,101 ops/sec ±2.22% (88 runs sampled)
Y x 2,799,791 ops/sec ±1.03% (87 runs sampled)
Y’ x 3,678,654 ops/sec ±1.57% (77 runs sampled)
callee x 2,632,864 ops/sec ±0.99% (81 runs sampled)
可见Y和callee的性能相差不多,因为需要临时构建函数,所以跟直接的fact递归调用有差不多一个数量级的差异,将不定点函数算出后保存下来,大概会有一倍左右的性能提升。
以上就是JavaScript 中匿名函数的递归调用的代码详细介绍的内容,更多相关内容请关注PHP中文网(www.php.cn)!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

如何使用WebSocket和JavaScript实现在线语音识别系统引言:随着科技的不断发展,语音识别技术已经成为了人工智能领域的重要组成部分。而基于WebSocket和JavaScript实现的在线语音识别系统,具备了低延迟、实时性和跨平台的特点,成为了一种被广泛应用的解决方案。本文将介绍如何使用WebSocket和JavaScript来实现在线语音识别系

WebSocket与JavaScript:实现实时监控系统的关键技术引言:随着互联网技术的快速发展,实时监控系统在各个领域中得到了广泛的应用。而实现实时监控的关键技术之一就是WebSocket与JavaScript的结合使用。本文将介绍WebSocket与JavaScript在实时监控系统中的应用,并给出代码示例,详细解释其实现原理。一、WebSocket技

如何使用WebSocket和JavaScript实现在线预约系统在当今数字化的时代,越来越多的业务和服务都需要提供在线预约功能。而实现一个高效、实时的在线预约系统是至关重要的。本文将介绍如何使用WebSocket和JavaScript来实现一个在线预约系统,并提供具体的代码示例。一、什么是WebSocketWebSocket是一种在单个TCP连接上进行全双工

如何利用JavaScript和WebSocket实现实时在线点餐系统介绍:随着互联网的普及和技术的进步,越来越多的餐厅开始提供在线点餐服务。为了实现实时在线点餐系统,我们可以利用JavaScript和WebSocket技术。WebSocket是一种基于TCP协议的全双工通信协议,可以实现客户端与服务器的实时双向通信。在实时在线点餐系统中,当用户选择菜品并下单

JavaScript和WebSocket:打造高效的实时天气预报系统引言:如今,天气预报的准确性对于日常生活以及决策制定具有重要意义。随着技术的发展,我们可以通过实时获取天气数据来提供更准确可靠的天气预报。在本文中,我们将学习如何使用JavaScript和WebSocket技术,来构建一个高效的实时天气预报系统。本文将通过具体的代码示例来展示实现的过程。We

JavaScript教程:如何获取HTTP状态码,需要具体代码示例前言:在Web开发中,经常会涉及到与服务器进行数据交互的场景。在与服务器进行通信时,我们经常需要获取返回的HTTP状态码来判断操作是否成功,根据不同的状态码来进行相应的处理。本篇文章将教你如何使用JavaScript获取HTTP状态码,并提供一些实用的代码示例。使用XMLHttpRequest

用法:在JavaScript中,insertBefore()方法用于在DOM树中插入一个新的节点。这个方法需要两个参数:要插入的新节点和参考节点(即新节点将要被插入的位置的节点)。

JavaScript中的HTTP状态码获取方法简介:在进行前端开发中,我们常常需要处理与后端接口的交互,而HTTP状态码就是其中非常重要的一部分。了解和获取HTTP状态码有助于我们更好地处理接口返回的数据。本文将介绍使用JavaScript获取HTTP状态码的方法,并提供具体代码示例。一、什么是HTTP状态码HTTP状态码是指当浏览器向服务器发起请求时,服务
