目录
操作符连接" >方法1:直接通过加号(+)操作符连接
方法2:join方法
方法3:替换
下面再来说一下三种方法的不同
下面用实验来说明字符串连接的效率问题。
首页 后端开发 Python教程 使用python字符串连接的三种方法及其效率、适用场景详细介绍

使用python字符串连接的三种方法及其效率、适用场景详细介绍

Mar 19, 2017 pm 03:27 PM

python字符串连接的方法,一般有以下三种:

方法1:直接通过加号(+)操作符连接

website = 'python' + 'tab' + '.com'
登录后复制

方法2:join方法

listStr = ['python', 'tab', '.com'] 
website = ''.join(listStr)
登录后复制

方法3:替换

website = '%s%s%s' % ('python', 'tab', '.com')
登录后复制

下面再来说一下三种方法的不同

方法1,使用简单直接,但是网上不少人说这种方法效率低

之所以说python 中使用 + 进行字符串连接的操作效率低下,是因为python中字符串是不可变的类型,使用 + 连接两个字符串时会生成一个新的字符串,生成新的字符串就需要重新申请内存,当连续相加的字符串很多时(a+b+c+d+e+f+...) ,效率低下就是必然的了

方法2,使用略复杂,但对多个字符进行连接时效率高,只会有一次内存的申请。而且如果是对list的字符进行连接的时候,这种方法必须是首选

方法3:字符串格式化,这种方法非常常用,本人也推荐使用该方法

下面用实验来说明字符串连接的效率问题。

比较对象:加号连接 VS join连接
python版本: python2.7
系统环境:CentOS
登录后复制

实验一:

# -*- coding: utf-8 -*-
from time import time
def method1():
    t = time()
    for i in xrange(100000):
        s = 'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'
    print time() - t
def method2():
    t = time()
    for i in xrange(100000):
        s = ''.join(['pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab'])
    print time() -t
method1()
method2()
登录后复制

结果:

0.641695976257
0.341440916061
登录后复制

实验二:

# -*- coding: utf-8 -*-
from time import time
def method1():
    t = time()
    for i in xrange(100000):
        s = 'pythontab'+'pythontab'+'pythontab'+'pythontab'
    print time() - t
def method2():
    t = time()
    for i in xrange(100000):
        s = ''.join(['pythontab','pythontab','pythontab','pythontab'])
    print time() -t
method1()
method2()
登录后复制

结果:

0.0265691280365
0.0522091388702
登录后复制

上面两个实验出现了完全不同的结果,分析这两个实验唯一不同的是:字符串连接个数。

结论:加号连接效率低是在连续进行多个字符串连接的时候出现的,如果连接的个数较少,加号连接效率反而比join连接效率高

以上是使用python字符串连接的三种方法及其效率、适用场景详细介绍 的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前 By 尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

如何使用Python查找文本文件的ZIPF分布 如何使用Python查找文本文件的ZIPF分布 Mar 05, 2025 am 09:58 AM

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

我如何使用美丽的汤来解析HTML? 我如何使用美丽的汤来解析HTML? Mar 10, 2025 pm 06:54 PM

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

python中的图像过滤 python中的图像过滤 Mar 03, 2025 am 09:44 AM

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

如何使用Python使用PDF文档 如何使用Python使用PDF文档 Mar 02, 2025 am 09:54 AM

PDF 文件因其跨平台兼容性而广受欢迎,内容和布局在不同操作系统、阅读设备和软件上保持一致。然而,与 Python 处理纯文本文件不同,PDF 文件是二进制文件,结构更复杂,包含字体、颜色和图像等元素。 幸运的是,借助 Python 的外部模块,处理 PDF 文件并非难事。本文将使用 PyPDF2 模块演示如何打开 PDF 文件、打印页面和提取文本。关于 PDF 文件的创建和编辑,请参考我的另一篇教程。 准备工作 核心在于使用外部模块 PyPDF2。首先,使用 pip 安装它: pip 是 P

如何在django应用程序中使用redis缓存 如何在django应用程序中使用redis缓存 Mar 02, 2025 am 10:10 AM

本教程演示了如何利用Redis缓存以提高Python应用程序的性能,特别是在Django框架内。 我们将介绍REDIS安装,Django配置和性能比较,以突出显示BENE

如何使用TensorFlow或Pytorch进行深度学习? 如何使用TensorFlow或Pytorch进行深度学习? Mar 10, 2025 pm 06:52 PM

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

Python中的平行和并发编程简介 Python中的平行和并发编程简介 Mar 03, 2025 am 10:32 AM

Python是数据科学和处理的最爱,为高性能计算提供了丰富的生态系统。但是,Python中的并行编程提出了独特的挑战。本教程探讨了这些挑战,重点是全球解释

如何在Python中实现自己的数据结构 如何在Python中实现自己的数据结构 Mar 03, 2025 am 09:28 AM

本教程演示了在Python 3中创建自定义管道数据结构,利用类和操作员超载以增强功能。 管道的灵活性在于它能够将一系列函数应用于数据集的能力,GE

See all articles