使用Python操作Excel之xlsx文件介绍
前段时间做一个项目,不得不使用Python直接生成Excel文件,后来随着需求的变化,还要对已有的Excel文件进行读取。所以想着记录下来,这篇文章主要给大家介绍了Python操作Excel之xlsx文件的相关资料,需要的朋友可以参考下。
前言
之前处理excel的读写时用的是xlrd/xlwt,但是这两个库有个缺点就是只对xls的格式处理的比较好,对以xlsx结尾的格式就不行了。由于现在大家使用的都是最新版本的office,excel的格式都是xlsx,因此此时再继续用xlrd/xlwt处理就不合适了,庆幸的是对于xlsx文件的读写,我们还可以使用openpyxl来操作。
我对excel并不熟悉,平时也不怎么用,所以对excel的处理很简单,只是简单的读写,这里演示的也是简单的读写操作,具体的高级功能,可以参考文后的链接地址。
一:写一个excel文件如下
from openpyxl import Workbook from openpyxl.utils import get_column_letter # 在内存中创建一个workbook对象,而且会至少创建一个 worksheet wb = Workbook() #获取当前活跃的worksheet,默认就是第一个worksheet ws = wb.active #设置单元格的值,A1等于6(测试可知openpyxl的行和列编号从1开始计算),B1等于7 ws.cell(row=1, column=1).value = 6 ws.cell("B1").value = 7 #从第2行开始,写入9行10列数据,值为对应的列序号A、B、C、D... for row in range(2,11): for col in range (1,11): ws.cell(row=row, column=col).value = get_column_letter(col) #可以使用append插入一行数据 ws.append(["我","你","她"]) #保存 wb.save(filename="/Users/budong/Desktop/a.xlsx")
二:读刚刚写入的excel内容如下
from openpyxl import load_workbook #打开一个workbook wb = load_workbook(filename="/Users/budong/Desktop/a.xlsx") #获取当前活跃的worksheet,默认就是第一个worksheet #ws = wb.active #当然也可以使用下面的方法 #获取所有表格(worksheet)的名字 sheets = wb.get_sheet_names() #第一个表格的名称 sheet_first = sheets[0] #获取特定的worksheet ws = wb.get_sheet_by_name(sheet_first) #获取表格所有行和列,两者都是可迭代的 rows = ws.rows columns = ws.columns #迭代所有的行 for row in rows: line = [col.value for col in row] print line #通过坐标读取值 print ws.cell('A1').value # A表示列,1表示行 print ws.cell(row=1, column=1).value
以上是使用Python操作Excel之xlsx文件介绍的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优
