首页 > 后端开发 > Python教程 > Python中多进程与多线程实例(一)

Python中多进程与多线程实例(一)

零下一度
发布: 2017-06-01 10:02:44
原创
1821 人浏览过

一、背景

  最近在Azkaban的测试工作中,需要在测试环境下模拟线上的调度场景进行稳定性测试。故而重操python旧业,通过python编写脚本来构造类似线上的调度场景。在脚本编写过程中,碰到这样一个需求:要在测试环境创建10000个作业流。

  最开始的想法是在一个azkaban project下循环调用10000次create job接口(每个Flow只包含一个job)。由于azkaban它本身没有增加/删除作业流的接口,所有的作业流修改、增加、删除其实都是通过重新上传项目zip包实现的,相应地每次调猛犸前端的create job接口,实际上是在猛犸端对zip包的内容进行了重新的整合后再重新上传zip包到azkaban,整个过程可以拆解成如下过程:解压zip包获得zip包内容,变更zip包内的文件内容,重新打包zip包,上传到azkaban。因此,随着循环次数越往后,zip包包含的内容会越多,接口执行一次的时间就越长。实践发现,第一次调该接口的时间大致不到1秒,到循环1000次的时候接口调用一次的时间就达到了将近3秒。因此,如果指望一个循环10000次来构造该场景,显然要耗费巨大的时间。

  在此背景下, 自然而然地就想到用多进程/多线程的方式来处理该问题。

二、“多任务”的操作系统基础

  大家都知道,操作系统可以同时运行多个任务。比如你一边听音乐,一边聊IM,一边写博客等。现在的cpu大都是多核的,但即使是过去的单核cpu也是支持多任务并行执行。

  单核cpu执行多任务的原理:操作系统交替轮流地执行各个任务。先让任务1执行0.01秒,然后切换到任务2执行0.01秒,再切换到任务3执行0.01秒...这样往复地执行下去。由于cpu的执行速度非常快,所以使用者的主观感受就是这些任务在并行地执行。

  多核cpu执行多任务的原理:由于实际应用中,任务的数量往往远超过cpu的核数,所以操作系统实际上是把这些多任务轮流地调度到每个核心上执行。

  对于操作系统来说,一个应用就是一个进程。比如打开一个浏览器,它是一个进程;打开一个记事本,它是一个进程。每个进程有它特定的进程号。他们共享系统的内存资源。进程是操作系统分配资源的最小单位

  而对于每一个进程而言,比如一个视频播放器,它必须同时播放视频和音频,就至少需要同时运行两个“子任务”,进程内的这些子任务就是通过线程来完成。线程是最小的执行单元。一个进程它可以包含多个线程,这些线程相互独立,同时又共享进程所拥有的资源。

三、Python多进程编程

  1. multiprocessing

  multiprocessing是Python提供的一个跨平台的多进程模块,通过它可以很方便地编写多进程程序,在不同的平台(Unix/Linux, Windows)都可以执行。

  下面就是使用multiprocessing编写多进程程序的代码:  

#!/usr/bin/python# -*- coding: utf-8 -*author = 'zni.feng'import  sys
reload (sys)
sys.setdefaultencoding('utf-8')from multiprocessing import Processimport osimport time#子进程fundef child_projcess_fun(name):    print 'Child process %s with processId %s starts.' % (name, os.getpid())
    time.sleep(3)    print 'Child process %s with processId %s ends.' % (name, os.getpid())if name == "main":    print 'Parent processId is: %s.' % os.getpid()
    p = Process(target = child_projcess_fun, args=('zni',))    print 'Process starts'
    p.start() #开始进程
    p.join() #等待子进程结束后再继续往下执行
    print 'Process ends.'
登录后复制

程序的输出:

Parent processId is: 11076.
Process starts
Child process zni with processId 11077 starts.
Child process zni with processId 11077 ends.
Process ends.
[Finished in 3.1s]
登录后复制

  2. Pool

  某些情况下,我们希望批量创建多个子进程,或者给定子进程数的上限,避免无限地消耗系统的资源。通过Pool(进程池)的方式,就可以完成这项工作,下面是使用Pool的代码:

 1 #!/usr/bin/python 2 # -*- coding: utf-8 -* 3 author = 'zni.feng' 4 import  sys 5 reload (sys) 6 sys.setdefaultencoding('utf-8') 7  8 from multiprocessing import Pool 9 import os, time10 11 def child_process_test(name, sleep_time):12     print 'Child process %s with processId %s starts.' % (name, os.getpid())13     time.sleep(sleep_time)14     print 'Child process %s with processId %s ends.' % (name, os.getpid())15 16 if name == "main":17     print 'Parent processId is: %s.' % os.getpid()18     p = Pool()  #进程池默认大小是cpu的核数19     #p = Pool(10) #生成一个容量为10的进程池,即最大同时执行10个子进程20     for i in range(5):21         p.apply_async(child_process_test, args=('zni_'+str(i), i+1,)) #p.apply_async向进程池提交目标请求22 23     print 'Child processes are running.'24     p.close()25     p.join() #用来等待进程池中的所有子进程结束再向下执行代码,必须在p.close()或者p.terminate()之后执行26     print 'All Processes end.'
登录后复制

程序的输出:

Parent processId is: 5050.
Child processes are running.
Child process zni_0 with processId 5052 starts.
Child process zni_1 with processId 5053 starts.
Child process zni_2 with processId 5054 starts.
Child process zni_3 with processId 5055 starts.
Child process zni_0 with processId 5052 ends.
Child process zni_4 with processId 5052 starts.
Child process zni_1 with processId 5053 ends.
Child process zni_2 with processId 5054 ends.
Child process zni_3 with processId 5055 ends.
Child process zni_4 with processId 5052 ends.
All Processes end.
[Finished in 6.2s]
登录后复制

close()方法和terminate()方法的区别:

  close:关闭进程池,使之不能再添加新的进程。已经执行的进程会等待继续执行直到结束。

  terminate:强制终止线程池,正在执行的进程也会被强制终止。

  3. 进程间通信

  Python的multiprocessing模块提供了多种进程间通信的方式,如Queue、Pipe等。

  3.1 Queue、Lock

  Queue是multiprocessing提供的一个模块,它的数据结构就是"FIFO——first in first out"的队列,常用的方法有:put(object)入队;get()出队;empty()判断队列是否为空。

  Lock:当多个子进程对同一个queue执行写操作时,为了避免并发操作产生冲突,可以通过加锁的方式使得某个子进程对queue拥有唯一的写权限,其他子进程必须等待该锁释放后才能再开始执行写操作。

  下面就是使用Queue进行进程间通信的代码:在父进程里创建两个子进程,分别实现对queue的读和写操作

 1 #!/usr/bin/python 2 # -*- coding: utf-8 -* 3 author = 'zni.feng' 4 import  sys 5 reload (sys) 6 sys.setdefaultencoding('utf-8') 7 from multiprocessing import Process, Queue, Lock 8 import os, time, random 9 #写数据进程10 def write(q, lock, name):11     print 'Child Process %s starts' % name12     #获得锁13     lock.acquire()14     for value in ['A' , 'B', 'C']:15         print 'Put %s to queue...' % value16         q.put(value)17         time.sleep(random.random())18     #释放锁19     lock.release()20     print 'Child Process %s ends' % name21 22 #读数据进程23 def read(q, lock, name):24     print 'Child Process %s starts' % name25     while True: #持续地读取q中的数据26         value =q.get()27         print 'Get %s from queue.' % value28     print 'Child Process %s ends' % name29 30 if name == "main":31     #父进程创建queue,并共享给各个子进程32     q= Queue()33     #创建锁34     lock = Lock()35     #创建第一个“写”子进程36     pw = Process(target = write , args=(q, lock, 'WRITE', ))37     #创建“读”进程38     pr = Process(target = read, args=(q,lock, 'READ',))39     #启动子进程pw,写入:40     pw.start()41     #启动子进程pr,读取:42     pr.start()43     #等待pw结束:44     pw.join()45     #pr是个死循环,通过terminate杀死:46     pr.terminate()47     print 'Test finish.'
登录后复制

  程序的输出结果为:

Child Process WRITE starts
Put A to queue...
Child Process READ starts
Get A from queue.
Put B to queue...
Get B from queue.
Put C to queue...
Get C from queue.
Child Process WRITE ends
Test finish.
[Finished in 2.0s]
登录后复制

  3.2 Pipe

  Pipe是另一种进程间通信的方式,俗称“管道”。它由两端组成,一端往管道里写入数据,另一端从管道里读取数据。
  下面就是使用Pipe通信的代码:

 1 #!/usr/bin/python 2 # -*- coding: utf-8 -* 3 author = 'zni.feng' 4 import  sys 5 reload (sys) 6 sys.setdefaultencoding('utf-8') 7 from multiprocessing import Process, Pipe 8 import os, time, random 9 10 #发送数据进程11 def send(child_pipe, name):12     print 'Child Process %s starts' % name13     child_pipe.send('This is Mr.Ni')14     child_pipe.close()15     time.sleep(random.random())16     print 'Child Process %s ends' % name17 18 #接收数据进程19 def recv(parent_pipe, name):20     print 'Child Process %s starts' % name21     print parent_pipe.recv()22     time.sleep(random.random())23     print 'Child Process %s ends' % name24 25 if name == "main":26     #创建管道27     parent,child = Pipe()28     #创建send进程29     ps = Process(target=send, args=(child, 'SEND'))30     #创建recv进程31     pr = Process(target=recv, args=(parent, 'RECEIVE'))32     #启动send进程33     ps.start()34     #等待send进程结束35     ps.join()36     #启动recv进程37     pr.start()38     #等待recv进程结束39     pr.join()40     print 'Test finish.'
登录后复制

  程序的输出结果如下:

Child Process SEND starts
Child Process SEND ends
Child Process RECEIVE starts
This is Mr.Ni
Child Process RECEIVE ends
Test finish.
[Finished in 1.8s]
登录后复制

【相关推荐】

1. Python中多进程与多线程实例(二)编程方法

2. Python中推荐使用多进程而不是多线程?分享推荐使用多进程的原因

3. python多进程快还是多线程快?

4. 关于Python进程、线程、协程详细介绍

5. Python 并发编程之线程池/进程池

以上是Python中多进程与多线程实例(一)的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:php.cn
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
并发 - python多进程+协程的正确姿势?
来自于 1970-01-01 08:00:00
0
0
0
python多线程爬取文件,怎么设置超时重连。
来自于 1970-01-01 08:00:00
0
0
0
python redis 多进程使用
来自于 1970-01-01 08:00:00
0
0
0
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板