首页 后端开发 Python教程 Python编程如何实现二叉树及七种遍历的方法详解

Python编程如何实现二叉树及七种遍历的方法详解

Jun 04, 2017 am 10:11 AM

这篇文章主要介绍了Python编程实现二叉树及七种遍历方法,结合实例形式详细分析了Python二叉树的定义及常用遍历操作技巧,需要的朋友可以参考下

本文实例讲述了Python实现二叉树及遍历方法。分享给大家供大家参考,具体如下:

介绍:

树是数据结构中非常重要的一种,主要的用途是用来提高查找效率,对于要重复查找的情况效果更佳,如二叉排序树、FP-树。另外可以用来提高编码效率,如哈弗曼树。

代码:

用Python实现树的构造和几种遍历算法,虽然不难,不过还是把代码作了一下整理总结。实现功能:

① 树的构造
递归实现先序遍历、中序遍历、后序遍历
③ 堆栈实现先序遍历、中序遍历、后序遍历
队列实现层次遍历

#coding=utf-8
class Node(object):
  """节点类"""
  def init(self, elem=-1, lchild=None, rchild=None):
    self.elem = elem
    self.lchild = lchild
    self.rchild = rchild
class Tree(object):
  """树类"""
  def init(self):
    self.root = Node()
    self.myQueue = []
  def add(self, elem):
    """为树添加节点"""
    node = Node(elem)
    if self.root.elem == -1: # 如果树是空的,则对根节点赋值
      self.root = node
      self.myQueue.append(self.root)
    else:
      treeNode = self.myQueue[0] # 此结点的子树还没有齐。
      if treeNode.lchild == None:
        treeNode.lchild = node
        self.myQueue.append(treeNode.lchild)
      else:
        treeNode.rchild = node
        self.myQueue.append(treeNode.rchild)
        self.myQueue.pop(0) # 如果该结点存在右子树,将此结点丢弃。
  def front_digui(self, root):
    """利用递归实现树的先序遍历"""
    if root == None:
      return
    print root.elem,
    self.front_digui(root.lchild)
    self.front_digui(root.rchild)
  def middle_digui(self, root):
    """利用递归实现树的中序遍历"""
    if root == None:
      return
    self.middle_digui(root.lchild)
    print root.elem,
    self.middle_digui(root.rchild)
  def later_digui(self, root):
    """利用递归实现树的后序遍历"""
    if root == None:
      return
    self.later_digui(root.lchild)
    self.later_digui(root.rchild)
    print root.elem,
  def front_stack(self, root):
    """利用堆栈实现树的先序遍历"""
    if root == None:
      return
    myStack = []
    node = root
    while node or myStack:
      while node:           #从根节点开始,一直找它的左子树
        print node.elem,
        myStack.append(node)
        node = node.lchild
      node = myStack.pop()      #while结束表示当前节点node为空,即前一个节点没有左子树了
      node = node.rchild         #开始查看它的右子树
  def middle_stack(self, root):
    """利用堆栈实现树的中序遍历"""
    if root == None:
      return
    myStack = []
    node = root
    while node or myStack:
      while node:           #从根节点开始,一直找它的左子树
        myStack.append(node)
        node = node.lchild
      node = myStack.pop()      #while结束表示当前节点node为空,即前一个节点没有左子树了
      print node.elem,
      node = node.rchild         #开始查看它的右子树
  def later_stack(self, root):
    """利用堆栈实现树的后序遍历"""
    if root == None:
      return
    myStack1 = []
    myStack2 = []
    node = root
    myStack1.append(node)
    while myStack1:          #这个while循环的功能是找出后序遍历的逆序,存在myStack2里面
      node = myStack1.pop()
      if node.lchild:
        myStack1.append(node.lchild)
      if node.rchild:
        myStack1.append(node.rchild)
      myStack2.append(node)
    while myStack2:             #将myStack2中的元素出栈,即为后序遍历次序
      print myStack2.pop().elem,
  def level_queue(self, root):
    """利用队列实现树的层次遍历"""
    if root == None:
      return
    myQueue = []
    node = root
    myQueue.append(node)
    while myQueue:
      node = myQueue.pop(0)
      print node.elem,
      if node.lchild != None:
        myQueue.append(node.lchild)
      if node.rchild != None:
        myQueue.append(node.rchild)
if name == 'main':
  """主函数"""
  elems = range(10)      #生成十个数据作为树节点
  tree = Tree()     #新建一个树对象
  for elem in elems:
    tree.add(elem)      #逐个添加树的节点
  print '队列实现层次遍历:'
  tree.level_queue(tree.root)
  print '\n\n递归实现先序遍历:'
  tree.front_digui(tree.root)
  print '\n递归实现中序遍历:'
  tree.middle_digui(tree.root)
  print '\n递归实现后序遍历:'
  tree.later_digui(tree.root)
  print '\n\n堆栈实现先序遍历:'
  tree.front_stack(tree.root)
  print '\n堆栈实现中序遍历:'
  tree.middle_stack(tree.root)
  print '\n堆栈实现后序遍历:'
  tree.later_stack(tree.root)
登录后复制

总结:

树的遍历主要有两种,一种是深度优先遍历,像前序、中序、后序;另一种是广度优先遍历,像层次遍历。在树结构中两者的区别还不是非常明显,但从树扩展到有向图,到无向图的时候,深度优先搜索和广度优先搜索的效率和作用还是有很大不同的。

深度优先一般用递归,广度优先一般用队列。一般情况下能用递归实现的算法大部分也能用堆栈来实现。

我印象中是有递归构造树的方法,却一直想不出该怎么构造。后来仔细想了一下,递归思想有点类似深度优先算法,而树的构造应该是广度优先的。如果用递归的话一定要有个终止条件,例如规定树深等。不然构造出来的树会偏向左单子树或者右单子树。所以一般树的构造还是应该用队列比较好。

以上是Python编程如何实现二叉树及七种遍历的方法详解的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:解释了不同的范例 PHP和Python:解释了不同的范例 Apr 18, 2025 am 12:26 AM

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

在PHP和Python之间进行选择:指南 在PHP和Python之间进行选择:指南 Apr 18, 2025 am 12:24 AM

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

vscode怎么在终端运行程序 vscode怎么在终端运行程序 Apr 15, 2025 pm 06:42 PM

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率

vs code 可以在 Windows 8 中运行吗 vs code 可以在 Windows 8 中运行吗 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

visual studio code 可以用于 python 吗 visual studio code 可以用于 python 吗 Apr 15, 2025 pm 08:18 PM

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

PHP和Python:深入了解他们的历史 PHP和Python:深入了解他们的历史 Apr 18, 2025 am 12:25 AM

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

vscode 扩展是否是恶意的 vscode 扩展是否是恶意的 Apr 15, 2025 pm 07:57 PM

VS Code 扩展存在恶意风险,例如隐藏恶意代码、利用漏洞、伪装成合法扩展。识别恶意扩展的方法包括:检查发布者、阅读评论、检查代码、谨慎安装。安全措施还包括:安全意识、良好习惯、定期更新和杀毒软件。

See all articles