首页 后端开发 Python教程 Python For Data Analysis学习之路

Python For Data Analysis学习之路

Jun 23, 2017 pm 04:25 PM
analysis data for python 学习 笔记

在引言章节里,介绍了MovieLens 1M数据集的处理示例。书中介绍该数据集来自GroupLens Research(),该地址会直接跳转到,这里面提供了来自MovieLens网站的各种评估数据集,可以下载相应的压缩包,我们需要的MovieLens 1M数据集也在里面。

下载解压后的文件夹如下:

这三个dat表都会在示例中用到。我所阅读的《Python For Data Analysis》中文版(PDF)是2014年第一版的,里面所有示例都是基于Python 2.7和pandas 0.8.2所写的,而我安装的是Python 3.5.2与pandas 0.20.2,里面的一些函数与方法会有较大的不同,有些是新版本中参数改变了,而有些是新版本里弃用了某些旧版本的函数,这导致我运行按照书中示例代码时,会遇到一些Error和Warning。在测试MovieLens 1M数据集代码时,在和一样我的配置环境下,会遇到如下几个问题。

  • 在将dat数据读入到pandas DataFrame对象中时,书中给出代码为: 

    users = pd.read_table('ml-1m/users.dat', sep='::', header=None, names=unames)
    
    rnames = ['user_id', 'movie_id', 'rating', 'timestamp']
    ratings = pd.read_table('ml-1m/ratings.dat', sep='::', header=None, names=rnames)
    
    mnames = ['movie_id', 'title', 'genres']
    movies = pd.read_table('ml-1m/movies.dat', sep='::', header=None, names=mnames)
    登录后复制

    直接运行会出现Warning:

    F:/python/HelloWorld/DataAnalysisByPython-1.py:4: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.
      users = pd.read_table('ml-1m/users.dat', sep='::', header=None, names=unames)
    F:/python/HelloWorld/DataAnalysisByPython-1.py:7: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.
      ratings = pd.read_table('ml-1m/ratings.dat', sep='::', header=None, names=rnames)
    F:/python/HelloWorld/DataAnalysisByPython-1.py:10: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.
      movies = pd.read_table('ml-1m/movies.dat', sep='::', header=None, names=mnames)
    登录后复制

    虽然也能运行,但是作为完美强迫症的我还是想要解决这个Warning。这个警告是说因为'C'引擎不支持,只能退回到'Python'引擎,而刚好pandas.read_table方法里有个engine参数,用来设置使用哪种解析引擎,有'C'和'Python'这两个选项。既然'C'引擎不支持,我们只需把engine设为'Python'就可以了。

    users = pd.read_table('ml-1m/users.dat', sep='::', header=None, names=unames, engine = 'python')
    
    rnames = ['user_id', 'movie_id', 'rating', 'timestamp']
    ratings = pd.read_table('ml-1m/ratings.dat', sep='::', header=None, names=rnames, engine = 'python')
    
    mnames = ['movie_id', 'title', 'genres']
    movies = pd.read_table('ml-1m/movies.dat', sep='::', header=None, names=mnames, engine = 'python')
    登录后复制

     

  • 使用pivot_table方法来对聚合后的数据按性别计算每部电影的平均得分,书中给出的代码为:

    mean_ratings = data.pivot_table('rating', rows='title', cols='gender', aggfunc='mean')
    登录后复制

     直接运行会报错,这段代码无法运行:

    Traceback (most recent call last):
      File "F:/python/HelloWorld/DataAnalysisByPython-1.py", line 19, in <module>mean_ratings = data.pivot_table('rating', rows='title', cols='gender', aggfunc='mean')
    TypeError: pivot_table() got an unexpected keyword argument 'rows'
    登录后复制

    TypeError说明这里的'rows'参数并不是方法里可用的关键字参数,这是这么回事呢?去官网上查了下pandas的API使用文档(),发现是因为0.20.2版的pandas.pivot_table里关键字参数变了,为了实现同样效果,只需把rows换成index就可以了,同时也没有cols参数,要用columns来代替。

    mean_ratings = data.pivot_table('rating', index='title', columns='gender', aggfunc='mean')
    登录后复制

     

  • 为了了解女性观众最喜欢的电影,使用DataFrame的方法对F列进行降序排序,书中的示例代码为:

    top_female_ratings = mean_ratings.sort_index(by='F', ascending=False)
    登录后复制

    这里也只是给出一个Warning,并不会干扰程序进行:

    F:/python/HelloWorld/DataAnalysisByPython-1.py:32: FutureWarning: by argument to sort_index is deprecated, pls use .sort_values(by=...)
      top_female_ratings = mean_ratings.sort_index(by='F', ascending=False)
    登录后复制

    这里是说进行排序的sort_index方法在将来语言或者库中可能发生改变,建议改为使用sort_values。在API使用文档中,对pandas.DataFrame.sort_index的描述为“Sort object by labels (along an axis)”,而对pandas.DataFrame.sort_values的描述为“Sort by the values along either axis”,两者能达到同样效果,那我就直接替换成sort_values就可以了。在后面的“计算评分分歧”中也会用到sort_index,也可以替换成sort_values。

    top_female_ratings = mean_ratings.sort_values(by='F', ascending=False)
    登录后复制

     

  • 最后一个错误还是和排序有关。在“计算评分分歧”中计算得分数据的标准差之后,根据过滤后的值对Series进行降序排序,书中的代码为:

    print(rating_std_by_title.order(ascending=False)[:10])
    登录后复制

    这里的错误是:

    Traceback (most recent call last):
      File "F:/python/HelloWorld/DataAnalysisByPython-1.py", line 47, in <module>print(rating_std_by_title.order(ascending=False)[:10])
      File "E:\Program Files\Python35\lib\site-packages\pandas\core\generic.py", line 2970, in __getattr__return object.__getattribute__(self, name)
    AttributeError: 'Series' object has no attribute 'order'
    登录后复制

    居然已经没有这个order的方法了,只好去API文档中找替代的方法用。有两个,sort_index和sort_values,这和DataFrame中的方法一样,为了保险起见,我选择使用sort_values:

    print(rating_std_by_title.sort_values(ascending=False)[:10]
    登录后复制

    得到的结果和数据展示的结果一样,可以放心使用。

第三方库不同版本间的差异还是挺明显的,建议是使用最新的版本,在使用时配合官网网站上的API使用文档,轻松解决各类问题~

以上是Python For Data Analysis学习之路的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1663
14
CakePHP 教程
1420
52
Laravel 教程
1313
25
PHP教程
1266
29
C# 教程
1238
24
PHP和Python:解释了不同的范例 PHP和Python:解释了不同的范例 Apr 18, 2025 am 12:26 AM

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

在PHP和Python之间进行选择:指南 在PHP和Python之间进行选择:指南 Apr 18, 2025 am 12:24 AM

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

PHP和Python:深入了解他们的历史 PHP和Python:深入了解他们的历史 Apr 18, 2025 am 12:25 AM

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

sublime怎么运行代码python sublime怎么运行代码python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中运行 Python 代码,需先安装 Python 插件,再创建 .py 文件并编写代码,最后按 Ctrl B 运行代码,输出会在控制台中显示。

vscode在哪写代码 vscode在哪写代码 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中编写代码简单易行,只需安装 VSCode、创建项目、选择语言、创建文件、编写代码、保存并运行即可。VSCode 的优点包括跨平台、免费开源、强大功能、扩展丰富,以及轻量快速。

Golang vs. Python:性能和可伸缩性 Golang vs. Python:性能和可伸缩性 Apr 19, 2025 am 12:18 AM

Golang在性能和可扩展性方面优于Python。1)Golang的编译型特性和高效并发模型使其在高并发场景下表现出色。2)Python作为解释型语言,执行速度较慢,但通过工具如Cython可优化性能。

visual studio code 可以用于 python 吗 visual studio code 可以用于 python 吗 Apr 15, 2025 pm 08:18 PM

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

See all articles