目录
1.TensorFlow的概念
1.1 什么是数据流图?
1.2 TensorFlow的特点
1.3 谁可以用TensorFlow?
1.4 为什么谷歌将TensorFlow开源呢?
1.5 TensorFlow 与计算生物学
2.Tensorflow的安装(基于pip)
2.1 安装pip(需要在超级管理员权限下进行安装)
2.2 安装Tensorflow
2.3 测试
 2.4 安装IDE Pycharm
2.5 将Pycharm锁定到启动器
参考文献:
首页 后端开发 Python教程 深度学习框架之TensorFlow的概念及安装

深度学习框架之TensorFlow的概念及安装

Jun 23, 2017 pm 03:11 PM
tensorflow 学习 框架 深度

2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源。

1.TensorFlow的概念

TensorFlow 是使用数据流图进行数值计算的开源软件库。也就是说,TensorFlow 使用图(graph)来表示计算任务。图中的节点表示数学运算,边表示运算之间用来交流的多维数组(也就是tensor,张量)。TensorFlow 灵活的架构使得你可以将计算过程部署到一个或多个CPU或GPU上。

TensorFlow 最初是由 Google Brain Team 的研究人员和工程师开发的,主要是 Google’s Machine Intelligence research organization 用来进行机器学习和深度神经网络研究的,但是这个系统在其它很多领域也是通用的。

qq%e6%88%aa%e5%9b%be20161130112948

模型的抽象表示是由框架自动处理的,这使得TensorFlow 及 Theano 特别适合发展基于梯度优化算法的新模型。

Theano 的主要缺点是对上述符号模型进行编译的时间较长,而 TensorFlow 有效地改善了这一点,也就是编译时间较短。

TensorFlow 的另一个优点是它的支持工具——TensorBoard ,将模型的训练过程可视化。这样,用户可以交互式地考察模型的结构,也可以观察参数和模型性能的改变。

TensorFlow 的开源版本只能运行在一台机器上,不过它支持多处理器(CPUs或GPUs)并行运算。

1.1 什么是数据流图?

数据流图用有向图来描述数学计算,图中有点和边。

节点通常进行数学计算,但也可以作为终点来表示结果,或者读/写持久变量(persistent variables)。

边用来描述节点之间的输入/输出关系。这些边携带不定大小的多维数组或张量。

这些节点被分配到计算装置上,异步执行。一旦所有的tensor同时到达了,就会进行并行计算。

由于图中张量(tensor)的流动(flow),所以我们称之为 TensorFlow。

Tensors Flowing

1.2 TensorFlow的特点

  1. Deep Flexibility,灵活性。TensorFlow并不是一个死板的神经网络的库,只要你可以将你的计算过程表示成数据流图,你就可以使用TensorFlow。定义新的计算就像写一个Python函数那么简单,成本并不大。如果你看不见你需要的底层的数据操作,可以通过C++来添加。

  2. True Portability,可移植性。TensorFlow在CPU或GPU上运行,可以在笔记本、服务器、或移动计算平台运行。不需要特殊硬件,不需要改变代码,就可以在移动设备上训练模型,封装Docker 和 TensorFlow 就可以在云上进行计算。

  3. Connect Research and Production,学术和工业兼得。在Google,科学家们用 TensorFlow 测试新的算法,产品团队用 TensorFlow 训练模型为用户服务。

  4. Auto-Differentiation,自动辨别。TensorFlow 的自动辨别能力 有益于实现那些基于梯度的机器学习算法。当你使用TensorFlow时,你为自己的预测模型定义计算的框架结构,再加上目标函数,接着只需要添加数据,TensorFlow 就会为你计算导数,也就是梯度。

  5. Language Options,语言选择。TensorFlow中可以使用Python接口,以及简单的C++接口,来构建和执行你的计算图(computational graphs)。如果你有兴趣,也可以提供自己所喜爱语言的接口——Lua, JavaScript, 或 R 等等。

  6. Maximize Performance,性能最大化。TensorFlow 允许你充分利用你可用的硬件:32 CPU cores and 4 GPU cards,线程、队列及异步计算等。你可以将TensorFlow图中的计算元素自由分配到不同的设备上,交给TensorFlow来处理。

1.3 谁可以用TensorFlow?

学生、研究人员、爱好者、黑客、工程师、开发者、发明者及创新者等等。

TensorFlow目前并不完整,它需要扩展。Google只是给了一个初始版本的源代码,他们希望建立一个活跃的开源社区,以使得TensorFlow越来越好。

目前在使用 TensorFlow 的公司有:Google、Uber、Twitter、DeepMind、京东等等。

1.4 为什么谷歌将TensorFlow开源呢?

「TensorFlow」是 Google 多年以来内部的机器学习系统。如今,Google 正将此系统作为开源系统,并将此系统的参数公布给业界工程师、学者和拥有大量编程能力的技术人员,这意味着什么呢?

答案很简单:Google认为,机器学习是未来创新的关键成分,这一领域的研究是全球范围的,并且发展很迅速,但就是缺乏标准工具。Google的工程师们用TensorFlow在做面向用户的产品和服务,Google的研究团队也打算分享TensorFlow的实现历程,他们希望TensorFlow能成为机器学习的最好工具之一。

打个不太恰当的比喻,如今 Google 对待 TensorFlow 系统,有点类似于对待旗下移动操作系统 Android。如果更多的数据科学家开始使用 Google 的系统来从事机器学习方面的研究,那么这将有利于 Google 对日益发展的机器学习行业拥有更多的主导权。

1.5 TensorFlow 与计算生物学

使用当前的深度学习的方法有一个先决条件:拥有许多样本的数据集。

像 识别与特定疾病相关的基因或 methylation probes,样本集很少,所以就不能用深度学习进行分析。【哭……我就是想用深度学习做疾病基因识别啊……】

想要使用深度学习模型,第一步就是解决如何表示数据的问题。如:剪接点、RNA-蛋白质结合位点、或甲基化。也就是说,你的样本的数量要远远超过变量的数量。

所以说,只要这关键的一步解决了,TensorFlow 就会为你打开深度学习的大门。

2.Tensorflow的安装(基于pip)

Pip 是一个 Python 的软件包安装与管理工具。并且,Tensorflow只能在Linux环境下进行安装,具体在VMware下安装Linux系统详情可以参看我另外一篇博客。

2.1 安装pip(需要在超级管理员权限下进行安装)

  1. sudo apt-get install python-pip python-dev

2016-11-06-16

2016-11-06-17

注:出现以上界面表示pip已经安装成功!

2.2 安装Tensorflow

  1. sudo pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.8.0-cp27-none-linux_x86_64.whl

 

2.3 测试

  1. >>> import tensorflow as tf

  2. >>> hello = tf.constant('Hello, TensorFlow!')

  3. >>> sess = tf.Session()

  4. >>> print sess.run(hello)

  5. Hello, TensorFlow!

注:Linux下退出Python方法:Ctrl+D

 2.4 安装IDE Pycharm

官网下载Community版 for Linux,根据官网教程的步骤进行安装。

注:可以直接在Linux中的浏览器中进行下载。

2016-11-06-20

首先,将文件拷贝到希望安装的位置。

  1. cd /home/andy

然后解压缩文件:

  1. tar xfz pycharm-community-2016.3.tar.gz

打开 pycharm.sh 文件所在目录:

  1. cd pycharm-community-2016.3/bin

运行 pycharm.sh 文件以安装 pycharm:

  1. ./pycharm.sh

 

安装好后会自动打开pycharm,接下来进行一系列的设置:

2016-11-07-1

2016-11-07-2

2016-11-07-3

 

出现下面界面时,说明安装成功了。

2016-11-07-5

选择“Create New Project”,创建新的工程。默认编译器是python 2.7。

2016-11-07-6

然后在新创建的工程上,右键选择“New->Python File ”,创建一个新的python文件Py01。

2016-11-07-7

在文件Py01中写入一段代码进行测试。

2016-11-07-8

可见,测试结果正确,可以在 Pycharm 上 import tensorflow了!

2016-11-07-9

2.5 将Pycharm锁定到启动器

在Ubuntu下,每次都需要找到 pycharm.sh 所在的文件夹,执行 ./pycharm.sh,打开pycharm,非常麻烦。

所以,我们最好能创建一个快捷方式。Ubuntu 的快捷方式都放在“计算机/usr/share/applications” 下。

首先在该目录下创建一个Pycharm.desktop:

  1. sudo gedit /usr/share/applications/Pycharm.desktop

然后输入以下内容,注意 Exec 和 Icon 需要找到你自己电脑中正确的路径,GenericName 和 Comment 中关于Pycharm的版本号你也需要根据实际情况定:

  1. [Desktop Entry]

  2. Type=Application

  3. Name=Pycharm

  4. GenericName=Pycharm2017

  5. Comment=Pycharm2017:The Python IDE

  6. Exec="/home/wangfang/Pycham/pycharm-community-2017.1.3/bin/pycharm.sh" %f

  7. Icon=/home/wangfang/Pycham/pycharm-community-2017.1.3/bin/pycharm.png

  8. Terminal=pycharm

  9. Categories=Pycharm;

保存后,通过路径/usr/share/applications/路径即可找到对应桌面Pycharm.desktop文件,然后双击打开,再锁定到启动器就好了。

2016-11-07-11

 

参考文献:

  1. TensorFlow 官网

  2. 极客学院——TensorFlow 官方文档中文版

  3. 极客学院——下载与安装

  4. 极客学院——MNIST机器学习入门(构建softmax回归模型)

  5. 极客学院——深入MNIST(构建深度卷积神经网络)

  6. Ladislav Rampasek and Anna Goldenberg, TensorFlow: Biology’s Gateway to Deep Learning?

  7. werm520的专栏:Ubuntu安装PyCharm

  8. Ubuntu下安装Anaconda

  9. Linux(Ubuntu14.04)下安装Anaconda和Spyder

  10. Ubuntu下如何安装TensorFlow


以上是深度学习框架之TensorFlow的概念及安装的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

如何评估Java框架商业支持的性价比 如何评估Java框架商业支持的性价比 Jun 05, 2024 pm 05:25 PM

评估Java框架商业支持的性价比涉及以下步骤:确定所需的保障级别和服务水平协议(SLA)保证。研究支持团队的经验和专业知识。考虑附加服务,如升级、故障排除和性能优化。权衡商业支持成本与风险缓解和提高效率。

PHP 框架的学习曲线与其他语言框架相比如何? PHP 框架的学习曲线与其他语言框架相比如何? Jun 06, 2024 pm 12:41 PM

PHP框架的学习曲线取决于语言熟练度、框架复杂性、文档质量和社区支持。与Python框架相比,PHP框架的学习曲线更高,而与Ruby框架相比,则较低。与Java框架相比,PHP框架的学习曲线中等,但入门时间较短。

PHP 框架的轻量级选项如何影响应用程序性能? PHP 框架的轻量级选项如何影响应用程序性能? Jun 06, 2024 am 10:53 AM

轻量级PHP框架通过小体积和低资源消耗提升应用程序性能。其特点包括:体积小,启动快,内存占用低提升响应速度和吞吐量,降低资源消耗实战案例:SlimFramework创建RESTAPI,仅500KB,高响应性、高吞吐量

Java框架的性能比较 Java框架的性能比较 Jun 04, 2024 pm 03:56 PM

根据基准测试,对于小型、高性能应用程序,Quarkus(快速启动、低内存)或Micronaut(TechEmpower优异)是理想选择。SpringBoot适用于大型、全栈应用程序,但启动时间和内存占用稍慢。

golang框架文档最佳实践 golang框架文档最佳实践 Jun 04, 2024 pm 05:00 PM

编写清晰全面的文档对于Golang框架至关重要。最佳实践包括:遵循既定文档风格,例如Google的Go编码风格指南。使用清晰的组织结构,包括标题、子标题和列表,并提供导航。提供全面准确的信息,包括入门指南、API参考和概念。使用代码示例说明概念和使用方法。保持文档更新,跟踪更改并记录新功能。提供支持和社区资源,例如GitHub问题和论坛。创建实际案例,如API文档。

如何为不同的应用场景选择最佳的golang框架 如何为不同的应用场景选择最佳的golang框架 Jun 05, 2024 pm 04:05 PM

根据应用场景选择最佳Go框架:考虑应用类型、语言特性、性能需求、生态系统。常见Go框架:Gin(Web应用)、Echo(Web服务)、Fiber(高吞吐量)、gorm(ORM)、fasthttp(速度)。实战案例:构建RESTAPI(Fiber),与数据库交互(gorm)。选择框架:性能关键选fasthttp,灵活Web应用选Gin/Echo,数据库交互选gorm。

golang框架开发实战详解:问题答疑 golang框架开发实战详解:问题答疑 Jun 06, 2024 am 10:57 AM

在Go框架开发中,常见的挑战及其解决方案是:错误处理:利用errors包进行管理,并使用中间件集中处理错误。身份验证和授权:集成第三方库并创建自定义中间件来检查凭据。并发处理:利用goroutine、互斥锁和通道来控制资源访问。单元测试:使用gotest包,模拟和存根进行隔离,并使用代码覆盖率工具确保充分性。部署和监控:使用Docker容器打包部署,设置数据备份,通过日志记录和监控工具跟踪性能和错误。

Golang框架学习过程中常见的误区有哪些? Golang框架学习过程中常见的误区有哪些? Jun 05, 2024 pm 09:59 PM

Go框架学习的误区有以下5种:过度依赖框架,限制灵活性。不遵循框架约定,代码难维护。使用过时库,带来安全和兼容性问题。过度使用包,混淆代码结构。忽视错误处理,导致意外行为和崩溃。

See all articles