MySQL— pymysql and SQLAlchemy
目录
一、pymysql
二、SQLAlchemy
一、pymysql
pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同。
1. 下载安装
#在终端直接运行 pip3 install pymysql
2. 使用操作
a. 执行SQL
#!/usr/bin/env python# -*- coding:utf-8 -*-import pymysql # 创建连接conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')# 创建游标cursor = conn.cursor() # 执行SQL,并返回受影响行数effect_row = cursor.execute("update hosts set host = '1.1.1.2'") # 执行SQL,并返回受影响行数#effect_row = cursor.execute("update hosts set host = '1.1.1.2' where nid > %s", (1,)) # 执行SQL,并返回受影响行数#effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)]) # 提交,不然无法保存新建或者修改的数据conn.commit() # 关闭游标cursor.close()# 关闭连接conn.close()
b. 获取新创建数据自增ID
#!/usr/bin/env python# -*- coding:utf-8 -*-import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') cursor = conn.cursor() cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)]) conn.commit()# 获取最新自增IDnew_id = cursor.lastrowid cursor.close() conn.close()
c. 获取查询数据
#!/usr/bin/env python# -*- coding:utf-8 -*-import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') cursor = conn.cursor() cursor.execute("select * from hosts") # 获取第一行数据row_1 = cursor.fetchone() # 获取前n行数据# row_2 = cursor.fetchmany(3)# 获取所有数据# row_3 = cursor.fetchall() conn.commit() cursor.close() conn.close()
注:在fetch数据时按照顺序进行,可以使用cursor.scroll(num,mode)来移动游标位置,如:
cursor.scroll(1,mode='relative') # 相对当前位置移动
cursor.scroll(2,mode='absolute') # 相对绝对位置移动
d. fetch数据类型
关于默认获取的数据是元组类型,如果想要获得字典类型的数据,即:
#!/usr/bin/env python# -*- coding:utf-8 -*-import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') # 游标设置为字典类型cursor = conn.cursor(cursor=pymysql.cursors.DictCursor) r = cursor.execute("call p1()") result = cursor.fetchone() conn.commit() cursor.close() conn.close()
二、SQLAlchemy
SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。
1. 下载安装
#在终端直接运行pip3 install SQLAlchemy
2. SQLAlchemy依赖关系

MySQL-Python mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
更多详见:
index
.html
3. ORM功能使用
#!/usr/bin/env python# -*- coding:utf-8 -*-from sqlalchemy.ext.declarative import declarative_basefrom sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Indexfrom sqlalchemy.orm import sessionmaker, relationshipfrom sqlalchemy import create_engine#表明依赖关系并创建连接,最大连接数为5 engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base() # 创建单表class Users(Base): __tablename__ = 'users' # 表名 id = Column(Integer, primary_key=True,autoincrement=True) # id列,主键自增 name = Column(String(32)) # name列 extra = Column(String(16)) # extra列 __table_args__ = ( UniqueConstraint('id', 'name', name='uix_id_name'), # 创建联合唯一索引 Index('ix_id_name', 'name', 'extra'), # 创建普通索引 ) # 一对多class Favor(Base): __tablename__ = 'favor' nid = Column(Integer, primary_key=True) caption = Column(String(50), default='red', unique=True) class Person(Base): __tablename__ = 'person' nid = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=True) favor_id = Column(Integer, ForeignKey("favor.nid")) # 创建外键 # 多对多class Group(Base): __tablename__ = 'group' id = Column(Integer, primary_key=True) name = Column(String(64), unique=True, nullable=False) port = Column(Integer, default=22) class Server(Base): __tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False) class ServerToGroup(Base): __tablename__ = 'servertogroup' nid = Column(Integer, primary_key=True, autoincrement=True) server_id = Column(Integer, ForeignKey('server.id')) # 创建外键 group_id = Column(Integer, ForeignKey('group.id')) # 创建外键 def init_db(): Base.metadata.create_all(engine) def drop_db(): Base.metadata.drop_all(engine)
注:设置外键的另一种方式 ForeignKeyConstraint(['other_id'], ['othertable.other_id'])


#!/usr/bin/env python# -*- coding:utf-8 -*-from sqlalchemy.ext.declarative import declarative_basefrom sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Indexfrom sqlalchemy.orm import sessionmaker, relationshipfrom sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base()# 创建单表class Users(Base):__tablename__ = 'users'id = Column(Integer, primary_key=True) name = Column(String(32)) extra = Column(String(16))__table_args__ = ( UniqueConstraint('id', 'name', name='uix_id_name'), Index('ix_id_name', 'name', 'extra'), )def __repr__(self):return "%s-%s" %(self.id, self.name)# 一对多class Favor(Base):__tablename__ = 'favor'nid = Column(Integer, primary_key=True) caption = Column(String(50), default='red', unique=True)def __repr__(self):return "%s-%s" %(self.nid, self.caption)class Person(Base):__tablename__ = 'person'nid = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=True) favor_id = Column(Integer, ForeignKey("favor.nid"))# 与生成表结构无关,仅用于查询方便favor = relationship("Favor", backref='pers')# 多对多class ServerToGroup(Base):__tablename__ = 'servertogroup'nid = Column(Integer, primary_key=True, autoincrement=True) server_id = Column(Integer, ForeignKey('server.id')) group_id = Column(Integer, ForeignKey('group.id')) group = relationship("Group", backref='s2g') server = relationship("Server", backref='s2g')class Group(Base):__tablename__ = 'group'id = Column(Integer, primary_key=True) name = Column(String(64), unique=True, nullable=False) port = Column(Integer, default=22)# group = relationship('Group',secondary=ServerToGroup,backref='host_list')class Server(Base):__tablename__ = 'server'id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False)def init_db(): Base.metadata.create_all(engine)def drop_db(): Base.metadata.drop_all(engine) Session = sessionmaker(bind=engine) session = Session()
b.1 增
#单条增加obj = Users(name="alex0", extra='sb') session.add(obj)#多条增加session.add_all([ Users(name="alex1", extra='sb'), Users(name="alex2", extra='sb'), ])#提交session.commit()
b.2 删
#先查询到要删除的记录,再deletesession.query(Users).filter(Users.id > 2).delete() session.commit()
b.3 改
#先查询,再更新session.query(Users).filter(Users.id > 2).update({"name" : "099"}) # 直接更改session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + "099"}, synchronize_session=False) # 字符串拼接session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate") # 数字相加session.commit()
b.4 查
ret = session.query(Users).all() ret = session.query(Users.name, Users.extra).all() ret = session.query(Users).filter_by(name='alex').all() ret = session.query(Users).filter_by(name='alex').first() ret = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(User.id).all() ret = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all()
b.5 其它
# 条件ret = session.query(Users).filter_by(name='alex').all() # 条件内为关键字表达式ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all() # 条件内为SQL表达式ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all() # betweenret = session.query(Users).filter(Users.id.in_([1,3,4])).all() # inret = session.query(Users).filter(~Users.id.in_([1,3,4])).all() # not inret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all() # 子查询条件from sqlalchemy import and_, or_ ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all() # andret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all() # orret = session.query(Users).filter( or_( Users.id < 2, and_(Users.name == 'eric', Users.id > 3), Users.extra != "")).all()# 通配符ret = session.query(Users).filter(Users.name.like('e%')).all() # e开头ret = session.query(Users).filter(~Users.name.like('e%')).all() # 非e开头# 限制ret = session.query(Users)[1:2] # 相当于limit# 排序ret = session.query(Users).order_by(Users.name.desc()).all() ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all()# 分组from sqlalchemy.sql import func ret = session.query(Users).group_by(Users.extra).all() ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).all() ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all()# 连表ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() # 笛卡儿积连表ret = session.query(Person).join(Favor).all() # 默认内连 inner joinret = session.query(Person).join(Favor, isouter=True).all() # 左连# 组合q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union(q2).all() q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union_all(q2).all()
参考资料:
1. Python开发【第十九篇】:Python操作MySQL
以上是MySQL— pymysql and SQLAlchemy的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题











可以通过以下步骤打开 phpMyAdmin:1. 登录网站控制面板;2. 找到并点击 phpMyAdmin 图标;3. 输入 MySQL 凭据;4. 点击 "登录"。

MySQL是一种开源的关系型数据库管理系统,主要用于快速、可靠地存储和检索数据。其工作原理包括客户端请求、查询解析、执行查询和返回结果。使用示例包括创建表、插入和查询数据,以及高级功能如JOIN操作。常见错误涉及SQL语法、数据类型和权限问题,优化建议包括使用索引、优化查询和分表分区。

Redis 使用单线程架构,以提供高性能、简单性和一致性。它利用 I/O 多路复用、事件循环、非阻塞 I/O 和共享内存来提高并发性,但同时存在并发性受限、单点故障和不适合写密集型工作负载的局限性。

MySQL在数据库和编程中的地位非常重要,它是一个开源的关系型数据库管理系统,广泛应用于各种应用场景。1)MySQL提供高效的数据存储、组织和检索功能,支持Web、移动和企业级系统。2)它使用客户端-服务器架构,支持多种存储引擎和索引优化。3)基本用法包括创建表和插入数据,高级用法涉及多表JOIN和复杂查询。4)常见问题如SQL语法错误和性能问题可以通过EXPLAIN命令和慢查询日志调试。5)性能优化方法包括合理使用索引、优化查询和使用缓存,最佳实践包括使用事务和PreparedStatemen

选择MySQL的原因是其性能、可靠性、易用性和社区支持。1.MySQL提供高效的数据存储和检索功能,支持多种数据类型和高级查询操作。2.采用客户端-服务器架构和多种存储引擎,支持事务和查询优化。3.易于使用,支持多种操作系统和编程语言。4.拥有强大的社区支持,提供丰富的资源和解决方案。

Apache 连接数据库需要以下步骤:安装数据库驱动程序。配置 web.xml 文件以创建连接池。创建 JDBC 数据源,指定连接设置。从 Java 代码中使用 JDBC API 访问数据库,包括获取连接、创建语句、绑定参数、执行查询或更新以及处理结果。

有效监控 Redis 数据库对于保持最佳性能、识别潜在瓶颈和确保整体系统可靠性至关重要。 Redis Exporter Service 是一个强大的实用程序,旨在使用 Prometheus 监控 Redis 数据库。 本教程将指导您完成 Redis Exporter Service 的完整设置和配置,确保您无缝建立监控解决方案。通过学习本教程,您将实现完全可操作的监控设置

在 Docker 中启动 MySQL 的过程包含以下步骤:拉取 MySQL 镜像创建并启动容器,设置根用户密码并映射端口验证连接创建数据库和用户授予对数据库的所有权限
