首页 后端开发 Python教程 序列标注、手写小写字母OCR数据集、双向RNN

序列标注、手写小写字母OCR数据集、双向RNN

Jun 23, 2017 pm 02:55 PM
学习 序列 标注 笔记

序列标注(sequence labelling),输入序列每一帧预测一个类别。OCR(Optical Character Recognition 光学字符识别)。

MIT口语系统研究组Rob Kassel收集,斯坦福大学人工智能实验室Ben Taskar预处理OCR数据集(http://ai.stanford.edu/~btaskar/ocr/ ),包含大量单独手写小写字母,每个样本对应16X8像素二值图像。字线组合序列,序列对应单词。6800个,长度不超过14字母的单词。gzip压缩,内容用Tab分隔文本文件。Python csv模块直接读取。文件每行一个归一化字母属性,ID号、标签、像素值、下一字母ID号等。

下一字母ID值排序,按照正确顺序读取每个单词字母。收集字母,直到下一个ID对应字段未被设置为止。读取新序列。读取完目标字母及数据像素,用零图像填充序列对象,能纳入两个较大目标字母所有像素数据NumPy数组。

时间步之间共享softmax层。数据和目标数组包含序列,每个目标字母对应一个图像帧。RNN扩展,每个字母输出添加softmax分类器。分类器对每帧数据而非整个序列评估预测结果。计算序列长度。一个softmax层添加到所有帧:或者为所有帧添加几个不同分类器,或者令所有帧共享同一个分类器。共享分类器,权值在训练中被调整次数更多,训练单词每个字母。一个全连接层权值矩阵维数batch_size*in_size*out_size。现需要在两个输入维度batch_size、sequence_steps更新权值矩阵。令输入(RNN输出活性值)扁平为形状batch_size*sequence_steps*in_size。权值矩阵变成较大的批数据。结果反扁平化(unflatten)。

代价函数,序列每一帧有预测目标对,在相应维度平均。依据张量长度(序列最大长度)归一化的tf.reduce_mean无法使用。需要按照实际序列长度归一化,手工调用tf.reduce_sum和除法运算均值。

损失函数,tf.argmax针对轴2非轴1,各帧填充,依据序列实际长度计算均值。tf.reduce_mean对批数据所有单词取均值。

TensorFlow自动导数计算,可使用序列分类相同优化运算,只需要代入新代价函数。对所有RNN梯度裁剪,防止训练发散,避免负面影响。

训练模型,get_sataset下载手写体图像,预处理,小写字母独热编码向量。随机打乱数据顺序,分偏划分训练集、测试集。

单词相邻字母存在依赖关系(或互信息),RNN保存同一单词全部输入信息到隐含活性值。前几个字母分类,网络无大量输入推断额外信息,双向RNN(bidirectional RNN)克服缺陷。
两个RNN观测输入序列,一个按照通常顺序从左端读取单词,另一个按照相反顺序从右端读取单词。每个时间步得到两个输出活性值。送入共享softmax层前,拼接。分类器从每个字母获取完整单词信息。tf.modle.rnn.bidirectional_rnn已实现。

实现双向RNN。划分预测属性到两个函数,只关注较少内容。_shared_softmax函数,传入函数张量data推断输入尺寸。复用其他架构函数,相同扁平化技巧在所有时间步共享同一个softmax层。rnn.dynamic_rnn创建两个RNN。
序列反转,比实现新反向传递RNN运算容易。tf.reverse_sequence函数反转帧数据中sequence_lengths帧。数据流图节点有名称。scope参数是rnn_dynamic_cell变量scope名称,默认值RNN。两个参数不同RNN,需要不同域。
反转序列送入后向RNN,网络输出反转,和前向输出对齐。沿RNN神经元输出维度拼接两个张量,返回。双向RNN模型性能更优。

    import gzipimport csvimport numpy as npfrom helpers import downloadclass OcrDataset:

        URL = 'http://ai.stanford.edu/~btaskar/ocr/letter.data.gz'def __init__(self, cache_dir):
            path = download(type(self).URL, cache_dir)
            lines = self._read(path)
            data, target = self._parse(lines)
            self.data, self.target = self._pad(data, target)

        @staticmethoddef _read(filepath):
            with gzip.open(filepath, 'rt') as file_:
                reader = csv.reader(file_, delimiter='\t')
                lines = list(reader)return lines

        @staticmethoddef _parse(lines):
            lines = sorted(lines, key=lambda x: int(x[0]))
            data, target = [], []
            next_ = Nonefor line in lines:if not next_:
                    data.append([])
                    target.append([])else:assert next_ == int(line[0])
                next_ = int(line[2]) if int(line[2]) > -1 else None
                pixels = np.array([int(x) for x in line[6:134]])
                pixels = pixels.reshape((16, 8))
                data[-1].append(pixels)
                target[-1].append(line[1])return data, target

        @staticmethoddef _pad(data, target):
            max_length = max(len(x) for x in target)
            padding = np.zeros((16, 8))
            data = [x + ([padding] * (max_length - len(x))) for x in data]
            target = [x + ([''] * (max_length - len(x))) for x in target]return np.array(data), np.array(target)import tensorflow as tffrom helpers import lazy_propertyclass SequenceLabellingModel:def __init__(self, data, target, params):
            self.data = data
            self.target = target
            self.params = params
            self.prediction
            self.cost
            self.error
            self.optimize

        @lazy_propertydef length(self):
            used = tf.sign(tf.reduce_max(tf.abs(self.data), reduction_indices=2))
            length = tf.reduce_sum(used, reduction_indices=1)
            length = tf.cast(length, tf.int32)return length

        @lazy_propertydef prediction(self):
            output, _ = tf.nn.dynamic_rnn(
                tf.nn.rnn_cell.GRUCell(self.params.rnn_hidden),
                self.data,
                dtype=tf.float32,
                sequence_length=self.length,
            )# Softmax layer.max_length = int(self.target.get_shape()[1])
            num_classes = int(self.target.get_shape()[2])
            weight = tf.Variable(tf.truncated_normal(
                [self.params.rnn_hidden, num_classes], stddev=0.01))
            bias = tf.Variable(tf.constant(0.1, shape=[num_classes]))# Flatten to apply same weights to all time steps.output = tf.reshape(output, [-1, self.params.rnn_hidden])
            prediction = tf.nn.softmax(tf.matmul(output, weight) + bias)
            prediction = tf.reshape(prediction, [-1, max_length, num_classes])return prediction

        @lazy_propertydef cost(self):# Compute cross entropy for each frame.cross_entropy = self.target * tf.log(self.prediction)
            cross_entropy = -tf.reduce_sum(cross_entropy, reduction_indices=2)
            mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))
            cross_entropy *= mask# Average over actual sequence lengths.cross_entropy = tf.reduce_sum(cross_entropy, reduction_indices=1)
            cross_entropy /= tf.cast(self.length, tf.float32)return tf.reduce_mean(cross_entropy)

        @lazy_propertydef error(self):
            mistakes = tf.not_equal(
                tf.argmax(self.target, 2), tf.argmax(self.prediction, 2))
            mistakes = tf.cast(mistakes, tf.float32)
            mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))
            mistakes *= mask# Average over actual sequence lengths.mistakes = tf.reduce_sum(mistakes, reduction_indices=1)
            mistakes /= tf.cast(self.length, tf.float32)return tf.reduce_mean(mistakes)

        @lazy_propertydef optimize(self):
            gradient = self.params.optimizer.compute_gradients(self.cost)try:
                limit = self.params.gradient_clipping
                gradient = [
                    (tf.clip_by_value(g, -limit, limit), v)if g is not None else (None, v)for g, v in gradient]except AttributeError:print('No gradient clipping parameter specified.')
            optimize = self.params.optimizer.apply_gradients(gradient)return optimizeimport randomimport tensorflow as tfimport numpy as npfrom helpers import AttrDictfrom OcrDataset import OcrDatasetfrom SequenceLabellingModel import SequenceLabellingModelfrom batched import batched

    params = AttrDict(
        rnn_cell=tf.nn.rnn_cell.GRUCell,
        rnn_hidden=300,
        optimizer=tf.train.RMSPropOptimizer(0.002),
        gradient_clipping=5,
        batch_size=10,
        epochs=5,
        epoch_size=50)def get_dataset():
        dataset = OcrDataset('./ocr')# Flatten images into vectors.dataset.data = dataset.data.reshape(dataset.data.shape[:2] + (-1,))# One-hot encode targets.target = np.zeros(dataset.target.shape + (26,))for index, letter in np.ndenumerate(dataset.target):if letter:
                target[index][ord(letter) - ord('a')] = 1dataset.target = target# Shuffle order of examples.order = np.random.permutation(len(dataset.data))
        dataset.data = dataset.data[order]
        dataset.target = dataset.target[order]return dataset# Split into training and test data.dataset = get_dataset()
    split = int(0.66 * len(dataset.data))
    train_data, test_data = dataset.data[:split], dataset.data[split:]
    train_target, test_target = dataset.target[:split], dataset.target[split:]# Compute graph._, length, image_size = train_data.shape
    num_classes = train_target.shape[2]
    data = tf.placeholder(tf.float32, [None, length, image_size])
    target = tf.placeholder(tf.float32, [None, length, num_classes])
    model = SequenceLabellingModel(data, target, params)
    batches = batched(train_data, train_target, params.batch_size)

    sess = tf.Session()
    sess.run(tf.initialize_all_variables())for index, batch in enumerate(batches):
        batch_data = batch[0]
        batch_target = batch[1]
        epoch = batch[2]if epoch >= params.epochs:breakfeed = {data: batch_data, target: batch_target}
        error, _ = sess.run([model.error, model.optimize], feed)print('{}: {:3.6f}%'.format(index + 1, 100 * error))

    test_feed = {data: test_data, target: test_target}
    test_error, _ = sess.run([model.error, model.optimize], test_feed)print('Test error: {:3.6f}%'.format(100 * error))import tensorflow as tffrom helpers import lazy_propertyclass BidirectionalSequenceLabellingModel:def __init__(self, data, target, params):
            self.data = data
            self.target = target
            self.params = params
            self.prediction
            self.cost
            self.error
            self.optimize

        @lazy_propertydef length(self):
            used = tf.sign(tf.reduce_max(tf.abs(self.data), reduction_indices=2))
            length = tf.reduce_sum(used, reduction_indices=1)
            length = tf.cast(length, tf.int32)return length

        @lazy_propertydef prediction(self):
            output = self._bidirectional_rnn(self.data, self.length)
            num_classes = int(self.target.get_shape()[2])
            prediction = self._shared_softmax(output, num_classes)return predictiondef _bidirectional_rnn(self, data, length):
            length_64 = tf.cast(length, tf.int64)
            forward, _ = tf.nn.dynamic_rnn(
                cell=self.params.rnn_cell(self.params.rnn_hidden),
                inputs=data,
                dtype=tf.float32,
                sequence_length=length,
                scope='rnn-forward')
            backward, _ = tf.nn.dynamic_rnn(
            cell=self.params.rnn_cell(self.params.rnn_hidden),
            inputs=tf.reverse_sequence(data, length_64, seq_dim=1),
            dtype=tf.float32,
            sequence_length=self.length,
            scope='rnn-backward')
            backward = tf.reverse_sequence(backward, length_64, seq_dim=1)
            output = tf.concat(2, [forward, backward])return outputdef _shared_softmax(self, data, out_size):
            max_length = int(data.get_shape()[1])
            in_size = int(data.get_shape()[2])
            weight = tf.Variable(tf.truncated_normal(
                [in_size, out_size], stddev=0.01))
            bias = tf.Variable(tf.constant(0.1, shape=[out_size]))# Flatten to apply same weights to all time steps.flat = tf.reshape(data, [-1, in_size])
            output = tf.nn.softmax(tf.matmul(flat, weight) + bias)
            output = tf.reshape(output, [-1, max_length, out_size])return output

        @lazy_propertydef cost(self):# Compute cross entropy for each frame.cross_entropy = self.target * tf.log(self.prediction)
            cross_entropy = -tf.reduce_sum(cross_entropy, reduction_indices=2)
            mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))
            cross_entropy *= mask# Average over actual sequence lengths.cross_entropy = tf.reduce_sum(cross_entropy, reduction_indices=1)
            cross_entropy /= tf.cast(self.length, tf.float32)return tf.reduce_mean(cross_entropy)

        @lazy_propertydef error(self):
            mistakes = tf.not_equal(
                tf.argmax(self.target, 2), tf.argmax(self.prediction, 2))
            mistakes = tf.cast(mistakes, tf.float32)
            mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))
            mistakes *= mask# Average over actual sequence lengths.mistakes = tf.reduce_sum(mistakes, reduction_indices=1)
            mistakes /= tf.cast(self.length, tf.float32)return tf.reduce_mean(mistakes)

        @lazy_propertydef optimize(self):
            gradient = self.params.optimizer.compute_gradients(self.cost)try:
                limit = self.params.gradient_clipping
                gradient = [
                    (tf.clip_by_value(g, -limit, limit), v)if g is not None else (None, v)for g, v in gradient]except AttributeError:print('No gradient clipping parameter specified.')
            optimize = self.params.optimizer.apply_gradients(gradient)return optimize
登录后复制

 

参考资料:
《面向机器智能的TensorFlow实践》

欢迎加我微信交流:qingxingfengzi
我的微信公众号:qingxingfengzigz
我老婆张幸清的微信公众号:qingqingfeifangz

以上是序列标注、手写小写字母OCR数据集、双向RNN的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

小红书笔记怎么删除 小红书笔记怎么删除 Mar 21, 2024 pm 08:12 PM

小红书笔记怎么删除?在小红书APP中是可以编辑笔记的,多数的用户不知道小红书笔记如何的删除,接下来就是小编为用户带来的小红书笔记删除方法图文教程,感兴趣的用户快来一起看看吧!小红书使用教程小红书笔记怎么删除1、首先打开小红书APP进入到主页面,选择右下角【我】进入到专区;2、之后在我的专区,点击下图所示的笔记页面,选择要删除的笔记;3、进入到笔记页面,右上角【三个点】;4、最后下方会展开功能栏,点击【删除】即可完成。

学会彻底卸载pip,使用Python更加高效 学会彻底卸载pip,使用Python更加高效 Jan 16, 2024 am 09:01 AM

不再需要pip?快来学习如何有效卸载pip!引言:pip是Python的包管理工具之一,它可以方便地安装、升级和卸载Python包。然而,有时候我们可能需要卸载pip,可能是因为我们希望使用其他的包管理工具,或者因为我们需要完全清除Python环境。本文将介绍如何有效地卸载pip,并提供具体的代码示例。一、卸载pip的方法下面将介绍两种常见的卸载pip的方法

小红书发布过的笔记不见了怎么办?它刚发的笔记搜不到的原因是什么? 小红书发布过的笔记不见了怎么办?它刚发的笔记搜不到的原因是什么? Mar 21, 2024 pm 09:30 PM

作为一名小红书的用户,我们都曾遇到过发布过的笔记突然不见了的情况,这无疑让人感到困惑和担忧。在这种情况下,我们该怎么办呢?本文将围绕“小红书发布过的笔记不见了怎么办”这一主题,为你详细解答。一、小红书发布过的笔记不见了怎么办?首先,不要惊慌。如果你发现笔记不见了,保持冷静是关键,不要慌张。这可能是由于平台系统故障或操作失误引起的。检查发布记录很简单。只需打开小红书App,点击“我”→“发布”→“所有发布”,就可以查看自己的发布记录。在这里,你可以轻松找到之前发布的笔记。3.重新发布。如果找到了之

小红书怎么在笔记中添加商品链接 小红书在笔记中添加商品链接教程 小红书怎么在笔记中添加商品链接 小红书在笔记中添加商品链接教程 Mar 12, 2024 am 10:40 AM

  小红书怎么在笔记中添加商品链接?在小红书这款app中用户不仅可以浏览各种内容还可以进行购物,所以这款app中关于购物推荐、好物分享的内容是非常多的,如果小伙伴在这款app也是一个达人的话,也可以分享一些购物经验,找到商家进行合作,在笔记中添加连接之类的,很多人都愿意使用这款app购物,因为不仅方便,而且有很多达人会进行一些推荐,可以一边浏览有趣内容,一边看看有没有适合自己的衣服商品。一起看看如何在笔记中添加商品链接吧!小红书笔记添加商品链接方法  在手机桌面上打开app。  在app首页点击

深入研究matplotlib的色彩映射表 深入研究matplotlib的色彩映射表 Jan 09, 2024 pm 03:51 PM

深入学习matplotlib颜色表,需要具体代码示例一、引言matplotlib是一个功能强大的Python绘图库,它提供了丰富的绘图函数和工具,可以用于创建各种类型的图表。而颜色表(colormap)是matplotlib中一个重要的概念,它决定了图表的配色方案。深入学习matplotlib颜色表,将帮助我们更好地掌握matplotlib的绘图功能,使绘

2024年自动驾驶标注行业是否会被世界模型所颠覆? 2024年自动驾驶标注行业是否会被世界模型所颠覆? Mar 01, 2024 pm 10:37 PM

1.数据标注面临的问题(特别是基于BEV任务)随着基于BEVtransformer任务的兴起,随之带来的是对数据的依赖变的越来越重,基于BEV任务的标注也变得越来越重要。目前来看无论是2D-3D的联合障碍物标注,还是基于重建点云的clip的车道线或者Occpuancy任务标注都还是太贵了(和2D标注任务相比,贵了很多)。当然业界里面也有很多基于大模型等的半自动化,或者自动化标注的研究。还有一方面是自动驾驶的数据采集,周期太过于漫长,还涉及到数据合规能一系列问题。比如,你想采集一个平板车跨相机的场

揭秘C语言的吸引力: 发掘程序员的潜质 揭秘C语言的吸引力: 发掘程序员的潜质 Feb 24, 2024 pm 11:21 PM

学习C语言的魅力:解锁程序员的潜力随着科技的不断发展,计算机编程已经成为了一个备受关注的领域。在众多编程语言中,C语言一直以来都备受程序员的喜爱。它的简单、高效以及广泛应用的特点,使得学习C语言成为了许多人进入编程领域的第一步。本文将讨论学习C语言的魅力,以及如何通过学习C语言来解锁程序员的潜力。首先,学习C语言的魅力在于其简洁性。相比其他编程语言而言,C语

一起学习word根号输入办法 一起学习word根号输入办法 Mar 19, 2024 pm 08:52 PM

在word中编辑文字内容时,有时会需要输入公式符号。有的小伙们不知道在word根号输入的方法,小面就让小编跟小伙伴们一起分享下word根号输入的方法教程。希望对小伙伴们有所帮助。首先,打开电脑上的Word软件,然后打开要编辑的文件,并将光标移动到需要插入根号的位置,参考下方的图片示例。2.选择【插入】,再选择符号里的【公式】。如下方的图片红色圈中部分内容所示:3.接着选择下方的【插入新公式】。如下方的图片红色圈中部分内容所示:4.选择【根式】,再选择合适的根号。如下方的图片红色圈中部分内容所示:

See all articles