分享python snownlp的实例教程
SnowNLP是国人开发的python类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并且自带了一些训练好的字典。注意本程序都是处理的unicode编码,所以使用时请自行decode成unicode。MIT许可下发行。
其 github 主页
我自己修改了上文链接中的python代码并加入些许注释,以方便你的理解:
from snownlp import SnowNLP# SnowNLP库:# words:分词# tags:关键词# sentiments:情感度# pinyin:拼音# keywords(limit):关键词# summary:关键句子# sentences:语序# tf:tf值# idf:idf值s = SnowNLP(u'这个东西真心很赞')# s.words # [u'这个', u'东西', u'真心', u'很', u'赞']print(s.words) s.tags # [(u'这个', u'r'), (u'东西', u'n'), (u'真心', u'd')# , (u'很', u'd'), (u'赞', u'Vg')]print(s.sentiments)# s.sentiments # 0.9769663402895832 positive的概率# s.pinyin # [u'zhe', u'ge', u'dong', u'xi', # u'zhen', u'xin', u'hen',# u'zan']4s = SnowNLP(u'「繁體字」「繁體中文」的叫法在臺灣亦很常見。')# s.han # u'「繁体字」「繁体中文」的叫法在台湾亦很常见。'print(s.han)
from snownlp import SnowNLP text = u'''自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。 它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。 自然语言处理是一门融语言学、计算机科学、数学于一体的科学。 因此,这一领域的研究将涉及自然语言,即人们日常使用的语言, 所以它与语言学的研究有着密切的联系,但又有重要的区别。 自然语言处理并不是一般地研究自然语言, 而在于研制能有效地实现自然语言通信的计算机系统, 特别是其中的软件系统。因而它是计算机科学的一部分。'''s = SnowNLP(text)print(s.keywords(6)) # [u'语言', u'自然', u'计算机'] 不能用tags输出关键字.s.summary(3) # [u'因而它是计算机科学的一部分', u'自然语言处理是一门融语言学、计算机科学、# 数学于一体的科学', u'自然语言处理是计算机科学领域与人工智能领域中的一个重要方向']s.sentences# print(s.sentences)print(s.sentiments) # 1.0s = SnowNLP([[u'这篇', u'文章'], [u'那篇', u'论文'], [u'这个']])# print(s.tf)# print(s.idf)# print(s.sim([u'文章'])) # [0.3756070762985226, 0, 0]
在编译运行之前,先得安装snownlp包,后续还有pylab,pandas模块:
在VS Code终端(查看->集成终端)里面输入:
pip install snownlp
pip install pylab
pip install pandas
前提是你安装了pip,若是pip没有安装可以查看我之前的 文章
在VS Code中我们可以右键模块名查看定义,便能看到模块的实现了.不得不说VS Code很强大,希望微软能这么一直走下去,走向开源走向跨平台!!
然后我随便提取了《心灵捕手》豆瓣网评,放在了txt中:
其实大多数情况下,大陆的译名比港译要更有味道。
It is not ur fault!
我是在电视上偶尔才看到这个电影的,当时看的时候真的很感人。 为什么会有这么天才的人,却有着这样子曲折的人生。
是认为剧本很好却没有被完全拍出来:) 对演员的表演还是心存质疑一点点~ 呵呵
好评
前几日刚刚看过,一部触动心灵的电影,寻找真正的人生
这篇影评写的很棒,我的眼睛湿润了
很好的片子
最后就是处理的程序了:
from snownlp import SnowNLPimport pandas as pdimport pylab as pl txt = open('F:/_analyse_Emotion.txt') text = txt.readlines() txt.close()print('读入成功') sentences = [] senti_score = []for i in text: a1 = SnowNLP(i) a2 = a1.sentiments sentences.append(i) # 语序... senti_score.append(a2)print('doing') table = pd.DataFrame(sentences, senti_score)# table.to_excel('F:/_analyse_Emotion.xlsx', sheet_name='Sheet1')# ts = pd.Series(sentences, senti_score)# ts = ts.cumsum()# print(table)x = [1, 2, 3, 4, 5, 6, 7, 8] pl.mpl.rcParams['font.sans-serif'] = ['SimHei'] pl.plot(x, senti_score) pl.title(u'心 灵 捕 手 网 评') pl.xlabel(u'评 论 用 户') pl.ylabel(u'情 感 程 度') pl.show()
最后的效果:
可能有些不准确,我也是随便提取的数据,不过snownlp还是号称情感分析准确很高的!
以上是分享python snownlp的实例教程的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

无法找到一款将 XML 直接转换为 PDF 的应用程序,因为它们是两种根本不同的格式。XML 用于存储数据,而 PDF 用于显示文档。要完成转换,可以使用编程语言和库,例如 Python 和 ReportLab,来解析 XML 数据并生成 PDF 文档。

用大多数文本编辑器即可打开XML文件;若需更直观的树状展示,可使用 XML 编辑器,如 Oxygen XML Editor 或 XMLSpy;在程序中处理 XML 数据则需使用编程语言(如 Python)与 XML 库(如 xml.etree.ElementTree)来解析。

XML 美化本质上是提高其可读性,包括合理的缩进、换行和标签组织。其原理是通过遍历 XML 树,根据层级增加缩进,并处理空标签和包含文本的标签。Python 的 xml.etree.ElementTree 库提供了方便的 pretty_xml() 函数,可以实现上述美化过程。

没有简单、直接的免费手机端XML转PDF工具。需要的数据可视化过程涉及复杂的数据理解和渲染,市面上所谓的“免费”工具大多体验较差。推荐使用电脑端的工具或借助云服务,或自行开发App以获得更靠谱的转换效果。

直接在手机上将XML转换为PDF并不容易,但可以借助云端服务实现。推荐使用轻量级手机App上传XML文件并接收生成的PDF,配合云端API进行转换。云端API使用无服务器计算服务,选择合适的平台至关重要。处理XML解析和PDF生成时需要考虑复杂性、错误处理、安全性和优化策略。整个过程需要前端App与后端API协同工作,需要对多种技术有所了解。

修改XML内容需要编程,因为它需要精准找到目标节点才能增删改查。编程语言有相应库来处理XML,提供API像操作数据库一样进行安全、高效、可控的操作。

XML 转换图片需要先确定 XML 数据结构,再选择合适的图形化库(如 Python 的 matplotlib)和方法,根据数据结构选择可视化策略,考虑数据量和图片格式,进行分批处理或使用高效库,最终根据需求保存为 PNG、JPEG 或 SVG 等格式。

XML格式化工具可以将代码按照规则排版,提高可读性和理解性。选择工具时,要注意自定义能力、对特殊情况的处理、性能和易用性。常用的工具类型包括在线工具、IDE插件和命令行工具。
