Lock用法总结分享
Lock
在上一篇文章中我们讲到了如何使用关键字synchronized来实现同步访问。本文我们继续来探讨这个问题,从Java 5之后,在java.util.concurrent.locks包下提供了另外一种方式来实现同步访问,那就是Lock。
也许有朋友会问,既然都可以通过synchronized来实现同步访问了,那么为什么还需要提供Lock?这个问题将在下面进行阐述。本文先从synchronized的缺陷讲起,然后再讲述java.util.concurrent.locks包下常用的有哪些类和接口,最后讨论以下一些关于锁的概念方面的东西
synchronized缺陷
前面我们说过synchronized的线程释放锁的情况有两种:
代码块或者同步方法执行完毕
代码块或者同步方法出现异常有jvm自动释放锁
从上面的synchronized释放锁可以看出,只有synchronized代码块执行完毕或者异常才会释放,如果代码块中的程序因为IO原因阻塞了,那么线程将永远不会释放锁,但是此时另外的线程还要执行其他的程序,极大的影响了程序的执行效率,现在我们需要一种机制能够让线程不会一直无限的等待下去,能够响应中断,这个通过lock就可以办到
另外如果有一个程序,包含多个读线程和一个写线程,我们可以知道synchronized只能一个一个线程的执行,但是我们需要多个读线程同时进行读,那么使用synchronized肯定是不行的,但是我们使用lock同样可以办到
Lock
查看API可知,Lock是一个接口,因此是不可以直接创建对象的,但是我们可以利用其实现的类来创建对象,这个先不着急,我们先看看Lock类到底实现了什么方法,具体的实现我们将会在介绍其实现的类的时候再详细的讲解
方法
lock()
获取锁,如果没有获得就会一直等待
unlock()
释放锁
tryLock()
尝试获得锁,如果成功获得锁就执行,如果没有成功获得锁,那么就不会等待了
lockInterruptibly()
如果当前线程未被中断,则获取锁。
ReentrantLock
ReentrantLock是可重入锁,是实现Lock接口的一个类,可重入是一种线程的分配机制,可重入的意思就是总是分配给最近获得锁的线程,这是一种不公平的分配机制,将会出现饥饿现象,当然为了解决这种现象,ReentrantLock的构造方法还提供了一个fair参数,如果fair为true表示使用公平分配机制,将会有等待时间最长的线程获得锁
构造方法
ReentrantLock()
创建一个对象,默认使用的时可重入的机制
ReentrantLock(boolean fair)
如果fair为true那么使用的是公平分配机制
常用方法
lock()
获取锁,如果没有获取到将会一直阻塞
下面使用一段程序演示以下lock方法的使用,代码如下:
//实现接口的线程类public class MyThread implements Runnable {public ReentrantLock rLock = null; //注意这里的锁一定要是全局变量,否则每一个线程都创建一把锁,那么将会毫无意义 public MyThread() {this.rLock = new ReentrantLock(); // 创建默认的可重入锁}// 将unlock方法放在finally中确保执行中代码出现异常仍然能够释放锁,否则将会造成其它的线程阻塞public void display() {this.rLock.lock(); // 获取锁try {for (int i = 0; i < 10; i++) { System.out.println(Thread.currentThread().getName() + "正在输出"+ i); } } finally {this.rLock.unlock(); // 释放锁,注意这步是一定需要的} }@Overridepublic void run() {this.display(); // 调用display方法} }//线程的测试类,主要是创建对象启动线程public class Test {public static void main(String[] args) {final MyThread thread = new MyThread(); // 创建对象// 下面创建两个线程,并且直接启动,new Thread(thread).start();new Thread(thread).start(); } }
执行上面的代码得到下图的结果:
从上面的结果看出,线程是一个一个输出的,并且只有等待一个线程输出完毕才能执行下一个线程,这里的仅仅是针对lock和unlock之间的代码,之外的代码并不是受到控制
注意: 这里的创建的可重入锁的对象必须对于每一个线程来说是全局的变量,是可以共享的一个对象,如果你在display方法中创建这个对象,那么是毫无意义的,因为每一个线程用的根本不是同一把锁
boolean tryLock()
首先尝试获取锁,如果获取锁了就执行,否则就不会一直等待
下面使用一段代码尝试以下这个方法,代码如下:
//实现接口的线程类public class MyThread implements Runnable {public ReentrantLock rLock = null; // 注意这里的锁一定要是全局变量,否则每一个线程都创建一把锁,那么将会毫无意义public MyThread() {this.rLock = new ReentrantLock(); // 创建默认的可重入锁}// 将unlock方法放在finally中确保执行中代码出现异常仍然能够释放锁,否则将会造成其它的线程阻塞public void display() {if (this.rLock.tryLock()) // 如果获取了锁{try {for (int i = 0; i < 10; i++) { System.out.println(Thread.currentThread().getName() + "正在输出" + i); } } finally {this.rLock.unlock(); // 释放锁,注意这步是一定需要的} } else { System.out.println(Thread.currentThread().getName() + "获取锁失败,我将不会一直等待........"); } }@Overridepublic void run() {this.display(); // 调用display方法} }//线程的测试类,主要是创建对象启动线程public class Test {public static void main(String[] args) {final MyThread thread = new MyThread(); // 创建对象// 下面创建两个线程,并且直接启动,new Thread(thread).start();new Thread(thread).start(); } }
执行后的结果如下图:
从上面的结果我们知道线程0获取了锁开始执行,但是线程1并没有获取锁,但是使用的是tryLock并不是lock,因此不会一直等待下去,所以直接程序向下运行,直接跳过上锁的代码段,因此就输出了上面的那句话后直接结
ReadWriteLock
从API中可以知道,这个也是一个接口,用于实现读写线程,他有两个方法:Lock readLock(),Lock writeLock() 分别用于获得读锁和写锁,指定特定的锁可以实现特定的功能,比如读锁可以在写线程在执行的情况下可以实现多个读线程进行操作,下面我们来介绍它的具体的实现的类ReentrantReadWriteLock
ReentrantReadWriteLock
这个类也是一个可重入分配的类,当然前面已经说过了什么是可重入,现在我们来说说说这个类的详细的用法
构造方法
ReentrantReadWriteLock()
使用默认(非公平)的排序属性创建一个新的 ReentrantReadWriteLock。
ReentrantReadWriteLock(boolean fair)
使用给定的公平策略创建一个新的ReentrantReadWriteLock。
常用的方法
ReentrantReadWriteLock.ReadLock readLock()
用于返回读取操作的锁
前面已经说过读取操作的锁是用来实现多个线程共同执行的,代码如下:
//实现接口的线程类public class MyThread implements Runnable {public ReentrantReadWriteLock rwlock = null;public Lock rLock = null;public MyThread() {this.rwlock = new ReentrantReadWriteLock(); // 创建对象,使用的是非公平的this.rLock = this.rwlock.readLock(); // 获取读取锁对象}// 将unlock方法放在finally中确保执行中代码出现异常仍然能够释放锁,否则将会造成其它的线程阻塞public void display() {this.rLock.lock(); // 获取读取锁try {for (int i = 0; i < 10; i++) { System.out.println(Thread.currentThread().getName() + "正在输出"+ i); } } finally {this.rLock.unlock(); // 释放锁,注意这步是一定需要的} }@Overridepublic void run() {this.display(); // 调用display方法} }//线程的测试类,主要是创建对象启动线程public class Test {public static void main(String[] args) {final MyThread thread = new MyThread(); // 创建对象// 下面创建两个线程,并且直接启动,for(int i=0;i<5;i++) {new Thread(thread).start(); } } }
执行上面的程序结果如下:
从上面的结果可以知道,其实使用读取操作是多个线程同时进行读取的操作,因此一定要小心谨慎的使用,根据自己的需求,一般不能在里面进行修改了,因为出现结果不准确的结果,这个就不多说了,相信大家都明白,总之要小心使用
ReentrantReadWriteLock.WriteLock writeLock()
返回用于写入操作的锁
写入操作的锁和读取操作的锁不一样了,因为一次只能允许一个线程执行写入操作。
并且如果一个线程已经占用了读锁,另外一个线程申请写锁将会一直等待线程释放读锁。
如果一个线程已经占用了写锁,另外一个线程申请读锁,那么这个线程将会一直等待线程释放写锁才能执行。
总之意思就是写线程和读线程不能同时执行,但是多个读线程可以同时执行
下面将使用一个程序详细的体会以下读写锁的综合使用,代码如下:
//实现接口的线程类public class MyThread {public ReentrantReadWriteLock rwlock = null;public Lock rLock = null;public Lock wLock = null;public ArrayList<Integer> arrayList = null;public MyThread() {this.rwlock = new ReentrantReadWriteLock(); // 创建对象,使用的是非公平的this.rLock = this.rwlock.readLock(); // 获取读取锁对象arrayList = new ArrayList<>(); // 实例化this.wLock = this.rwlock.writeLock(); // 获取写入锁对象}// 将unlock方法放在finally中确保执行中代码出现异常仍然能够释放锁,否则将会造成其它的线程阻塞// //向arraylist中写入数据public void put() {this.wLock.lock(); // 获取写入锁try {for (int i = 0; i < 10; i++) { System.out.println(Thread.currentThread().getName() + "正在执行写入操作,写入" + i);this.arrayList.add(i); } } finally {this.wLock.unlock(); } }// 从arraylist中读取数据,这里只是随机读取使用的是get,并没有做什么修改,因为这仅仅是读取操作,如果进行了修改必须实现同步public void get() {this.rLock.lock(); // 获取读取操作的锁Random random = new Random();if (!arrayList.isEmpty()) {try {for (int i = 0; i < 10; i++) {int index = random.nextInt(this.arrayList.size() - 1);int data = this.arrayList.get(index); System.out.println(Thread.currentThread().getName() + "正在读取数据 " + data); } } finally {this.rLock.unlock(); } } else { System.out.println("ArrayList为空"); } } }//线程的测试类,主要是创建对象启动线程public class Test {public static void main(String[] args) {final MyThread thread = new MyThread(); // 创建对象ArrayList<Thread> arrayList = new ArrayList<>();/* * 创建8个读线程,2个写线程 */for (int i = 0; i < 2; i++) { arrayList.add(new Thread() {@Overridepublic void run() { thread.put(); } }); } for(int i=0;i<8;i++) { arrayList.add(new Thread(){@Overridepublic void run() { thread.get(); } }); } for (Thread t : arrayList) { t.start(); } } }
结果如下图:
从上面可以看出写入线程都是一个一个执行的,读取线程是一起执行的
注意: 所有的锁对象对于线程来说必须是全局变量,否则毫无意义。读线程只能进行不影响线程安全性的操作,比如不能进行对数据的修改插入,如果想要进行修改的话必须还要使用锁对必要的代码实现同步操作
参考文章
以上是Lock用法总结分享的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Jdk1.5以后,在java.util.concurrent.locks包下,有一组实现线程同步的接口和类,说到线程的同步,可能大家都会想到synchronized关键字,这是java内置的关键字,用来处理线程同步的,但这个关键字有很多的缺陷,使用起来也不是很方便和直观,所以就出现了Lock,下面,我们就来对比着讲解Lock。通常我们在使用synchronized关键字的时候会遇到下面这些问题:(1)不可控性,无法做到随心的加锁和释放锁。(2)效率比较低下,比如我们现在并发的读两个文件,读与读之

说明1、Lock是java.util.concurent包下的接口,定义了一系列的锁定操作方法。2、Lock界面主要包括ReentrantLock、ReentrantReadWriteLock、ReentrantReadWriteLock、WriteLock实现类。与Synchronized不同,Lock提供了获取锁、释放锁等相关界面,使其使用更加灵活,操作更加复杂。实例ReentrantReadWriteLocklock=newReentrantReadWriteLock();Lockread

1.作用(1)Lock方式来获取锁支持中断、超时不获取、是非阻塞的(2)提高了语义化,哪里加锁,哪里解锁都得写出来(3)Lock显式锁可以给我们带来很好的灵活性,但同时我们必须手动释放锁(4)支持Condition条件对象(5)允许多个读线程同时访问共享资源2.lock用法//获取锁voidlock()//如果当前线程未被中断,则获取锁voidlockInterruptibly()//返回绑定到此Lock实例的新Condition实例ConditionnewCondition()//仅在调用时锁

1.获取方法lock()、tryLock()、tryLock(longtime,TimeUnitunit)和lockInterruptibly()都是用来获取锁的。(1)lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。(2)tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。(3)tryLoc

摘要:在Java中提供了synchronized关键字来保证只有一个线程能够访问同步代码块。既然已经提供了synchronized关键字,那为何在Java的SDK包中,还会提供Lock接口呢?这是不是重复造轮子,多此一举呢?今天,我们就一起来探讨下这个问题。在Java中提供了synchronized关键字来保证只有一个线程能够访问同步代码块。既然已经提供了synchronized关键字,那为何在Java的SDK包中,还会提供Lock接口呢?这是不是重复造轮子,多此一举呢?今天,我们就一起来探讨下

Java技术栈中的常见问题及其解决方法在开发Java应用程序时,我们常常会遇到一些问题,例如性能问题、内存泄漏、线程安全等等。本文将介绍一些常见问题及其解决方法,并给出相应的代码示例。一、性能问题1.1频繁创建对象导致的性能问题频繁创建对象会导致垃圾回收的频繁触发,从而影响程序的性能。解决方法是使用对象池或者缓存重用对象。示例代码://使用对象池重用对象

1.说明在lock接口出现之前,Java程序是靠synchronized关键字实现锁功能的,而JavaSE5之后,并发包中新增了lock接口(以及相关实现类)用来实现锁功能,它提供了与synchronized关键字类似的同步功能,只是在使用时需要显式地获取和释放锁。虽然它缺少了(通过synchronized块或者方法所提供的)隐式获取释放锁的便捷性,但是却拥有了锁获取与释放的可操作性、可中断的获取锁以及超时获取锁等多种synchronized关键字所不具备的同步特性。2.主要方法lock()添加

1.从功能角度来看Lock和Synchronized都是java中去用来解决线程安全问题的一个工具2.从特性来看Synchronized是java中的同步关键字,Lock是J.U.C包中提供的接口,而这个接口有很多的实现类,包括ReentrantLock这样重入锁的实现,Synchronized可以通过两种方式去控制锁的力度一种把synchronized关键字修饰在方法层面,另一种是修饰在代码块上,可以通过synchronized加锁对象的生命周期,来控制锁的作用范围,锁对象是静态对象或者是类对
