首页 Java java教程 字符串的编辑距离实例详解

字符串的编辑距离实例详解

Jun 30, 2017 am 09:34 AM
动态规划 字符串 距离

  动态规划的算法题往往都是各大公司笔试题的常客。在不少算法类的微信公众号中,关于“动态规划”的文章屡见不鲜,都在试图用最浅显易懂的文字来描述讲解动态规划,甚至有的用漫画来解释,认真读每一篇公众号推送的文章实际上都能读得懂,都能对动态规划有一个大概了解。

  什么是动态规划?通俗地理解来说,一个问题的解决办法一看就知道(穷举),但不能一个一个数啊,你得找到最优的解决办法,换句话说题目中就会出现类似“最多”、“最少”,“一共有多少种”等提法,这些题理论上都能使用动态规划的思想来求解。动态规划与分治方法类似,都是通过组合子问题的解来求解原问题,但它对每个子问题只求解一次,将其保存在表格中,无需重新计算,通常用于求解最优化问题——《算法导论》

  编辑距离(Edit Distance),在本文指的是Levenshtein距离,也就是字符串S1通过插入、修改、删除三种操作最少能变换成字符串S2的次数。例如:S1 = abcS2 = abf,编辑距离d = 1(只需将c修改为f)。在本文中将利用动态规划的算法思想对字符串的编辑距离求解。

  定义:S1、S2表示两个字符串S1(i)表示S1的第一个字符d[i, j]表示S1i个前缀到S2的第j个前缀(例如:S1 = ”abc”,S2 = ”def”,求解S1S2的编辑距离d[3, 3])。

  1.   若S1 = ”abc”, S2 = ”dec”,此时它们的编辑距离为d[3, 3] = 2,观察两个字符串的最后一个字符是相同的,也就是说S1(3) = S2(3)不需要做任何变换,故S1 = ”abc”, S2 = ”dec” <= > S1’ = ”ab”, S2’ = ”de”,即当S1[i] = S[j]d[i, j] = d[i-1,j -1]。得到公式:d[i, j] = d[i - 1, j - 1] (S1[i] = S2[j])

  2.   上面一条得出了当S1[i] = S2[j]的计算公式,显然还有另一种情况就是S1[i] ≠ S2[j],若S1 = ”abc”, S2 = ”def”。S1变换到S2的过程可以修改,但还可以通过插入删除使得S1变换为S2

    1)在S1字符串末位插入字符“f”,此时S1 = ”abcf”,S2 = ”def”,此时即S1[i] = S2[j]的情况S1变换为S2的编辑距离为d[4, 3] = d[3, 2]。所以得出d[i, j]=d[i, j - 1] + 1。(+1是因为S1新增了”f”

    2)在S2字符串末位插入字符“c”,此时S1 = ”abc”S2 = ”defc”,此时即S1[i] = S[j]的情况,S1变换为S2的编辑距离为d[3, 4] = d[2, 3]。所以得出d[i, j]=d[i - 1, j] + 1,实际上这是对S1做了删除。(+1是因为S2新增了”c”

    3)将S1字符串末位字符修改”f”,此时S1 = ”abf”S2 = ”def”,此时即S1[i] = S[j]的情况,S1变换为S2的编辑距离为d[3, 3] = d[2, 2]。所以得出d[i, j] = d[i – 1, j - 1] + 1。(+1是因为S1修改了“c”

  综上,得出递推公式:

=>

  不妨用表格表示出动态规划对S1=”abc”S2=“def”的求解过程。

  可以看出红色方块即是最终所求的编辑距离,整个求解过程就是填满这个表——二维数组。下面是JavaPython分别对字符串编辑距离的动态规划求解。

  Java

 

  1 package com.algorithm.dynamicprogramming;  2   3 
  /**  4  * 动态规划——字符串的编辑距离  5  * s1 = "abc", s2 = "def"  6  
  * 计算公式:  7  *          | 0                                          
   i = 0, j = 0  8  *          | j                                          
    i = 0, j > 0  9  * d[i,j] = | i                                          
     i > 0, j = 0 10  *          | min(d[i,j-1]+1, d[i-1,j]+1, d[i-1,j-1])    s1(i) = s2(j) 11  
     *          | min(d[i,j-1]+1, d[i-1,j]+1, d[i-1,j-1]+1)  s1(i) ≠ s2(j) 12  * 定义二维数组[4][4]: 13 
      *      d e f            d e f 14  *   |x|x|x|x|        |0|1|2|3| 15  
      * a |x|x|x|x|  =>  a |1|1|2|3|  => 编辑距离d = [3][3] = 3 16  * b |x|x|x|x|      
      b |2|2|2|3| 17  * c |x|x|x|x|      c |3|3|3|3| 18  * 19  * Created by yulinfeng on 6/29/17. 20  
      */ 21 public class Levenshtein { 22  23     public static void main(String[] args) { 24         
      String s1 = "abc"; 25         String s2 = "def"; 26         int editDistance = levenshtein(s1, s2); 27         
      System.out.println("s1=" + s1 + "与s2=" + s2 + "的编辑距离为:" + editDistance); 28     } 29  30     /** 31      
      * 编辑距离求解 32      * @param s1 字符串s1 33      * @param s2 字符串s2 34      * @return 编辑距离 35      
      */ 36     private static int levenshtein(String s1, String s2) { 37         int i = 0;  //s1字符串中的字符下标 38      
         int j = 0;  //s2字符串中的字符下标 39         char s1i = 0;   //s1字符串第i个字符 40         
         char s2j = 0;   //s2字符串第j个字符 41         int m = s1.length();    //s1字符串长度 42         
         int n = s2.length();    //s2字符串长度 43         if (m == 0) {   
         //s1字符串长度为0,此时的编辑距离就是s2字符串长度 44             return n; 45         } 46         
         if (n == 0) { 47             return m;   //s2字符串长度为0,此时的编辑距离就是s1字符串长度 48         }          
         int[][] solutionMatrix = new int[m + 1][n + 1];     //求解矩阵 50         
         /** 51          *      
         d e f 52         *   |0|x|x|x| 53         
          * a |1|x|x|x| 54         
           * b |2|x|x|x| 55          
         * c |3|x|x|x| 56    */ 57         for (i = 0; i < m + 1; i++) { 58             solutionMatrix[i][0] = i; 59         } 60         
         /** 61          *      d e f 62         
          *   |0|1|2|3| 63          
          * a |x|x|x|x| 64          
          * b |x|x|x|x| 65          
         * c |x|x|x|x| 66          */ 67         for (j = 0; j < n + 1; j++) { 68             solutionMatrix[0][j] = j; 69         } 70         
         /** 71          * 上面两个操作后,求解矩阵变为 72         
          *      d e f 73         
           *   |0|1|2|3| 74          
         * a |1|x|x|x| 75         
          * b |2|x|x|x| 76         
          * c |3|x|x|x| 77          
          * 接下来就是填充剩余表格 78          
         */ 79         for (i = 1; i < m + 1; i++) {   //i = 1,j = 1, 2, 3,以行开始填充 80             s1i = s1.charAt(i - 1); 81             
         for (j = 1; j < n + 1; j++) { 82                 s2j = s2.charAt(j - 1); 83                 int flag = (s1i == s2j) ? 0 : 1;    
         //根据公式,如果s1[i] = s2[j],则d[i,j]=d[i-1,j-1],如果s1[i] ≠ s2[j],则其中一个公式为d[i,j]=d[i-1,j-1]+1 84                 
         solutionMatrix[i][j] = min(solutionMatrix[i][j-1] + 1, solutionMatrix[i-1][j] + 1, solutionMatrix[i-1][j-1] + flag); 85             
         } 86         } 87         return solutionMatrix[m][n]; 88     } 89  90     /** 91      * 根据公式求解编辑距离 92      
         * @param insert s1插入操作 93      * @param delete s1删除操作 94      * @param edit s1修改操作 95      * @return 编辑距离 96      
         */ 97     private static int min(int insert, int delete, int edit) { 98         int tmp = insert < delete ? insert : delete; 99         
         return tmp < edit ? tmp : edit;100     }101 }
登录后复制

  Python3

 1 &#39;&#39;&#39; 2     动态规划——字符串的编辑距离 3     s1 = "abc", s2 = "def" 4     
 计算公式: 5              | 0                                          
  i = 0, j = 0 6              | j                                           
  i = 0, j > 0 7     d[i,j] = | i                                          
   i > 0, j = 0 8              | min(d[i,j-1]+1, d[i-1,j]+1, d[i-1,j-1])    s1(i) = s2(j) 9              
   | min(d[i,j-1]+1, d[i-1,j]+1, d[i-1,j-1]+1)  s1(i) ≠ s2(j)10     
   定义二维数组[4][4]:11         d e f            d e f12     |x|x|x|x|        
   |0|1|2|3|13     a |x|x|x|x|  =>  a |1|1|2|3|  => 编辑距离d = [4][4] = 314     b |x|x|x|x|      
   b |2|2|2|3|15     c |x|x|x|x|      c |3|3|3|3|16 '''17 def levenshtein(s1, s2):18     i = 0  
    #s1字符串中的字符下标19     j = 0   #s2字符串中的字符下标20     s1i = ""    #s1字符串第i个字符21     
    s2j = ""    #s2字符串第j个字符22     m = len(s1) #s1字符串长度23     n = len(s2) #s2字符串长度24    
     if m == 0:25         return n    #s1字符串长度为0,此时的编辑距离就是s2字符串长度26     if n == 0:27        
      return m    #s2字符串长度为0,此时的编辑距离就是s1字符串长度28     
      solutionMatrix = [[0 for col in range(n + 1)] for row in range(m + 1)]  #长为m+1,宽为n+1的矩阵29     '''30       
      d e f31           |0|x|x|x|32         a |1|x|x|x|33         b |2|x|x|x|34        
       c |3|x|x|x|35     '''36     for i in range(m + 1):37         solutionMatrix[i][0] = i38     '''39       
      d e f40           |0|1|2|3|41         a |x|x|x|x|42         b |x|x|x|x|43         
       c |x|x|x|x|44         45     '''46     for j in range(n + 1):47         solutionMatrix[0][j] = j48     '''49         
       上面两个操作后,求解矩阵变为50              d e f51           |0|1|2|3|52         a |1|x|x|x|53        
        b |2|x|x|x|54         c |3|x|x|x|55         接下来就是填充剩余表格56     '''57     for x in range(1, m + 1):58         
        s1i = s1[x - 1]59         for y in range(1, n + 1):60             s2j = s2[y - 1]61             flag = 0 if s1i == s2j  else 162             
        solutionMatrix[x][y] = min(solutionMatrix[x][y-1] + 1, solutionMatrix[x-1][y] + 1, solutionMatrix[x-1][y-1] + flag)63 64     
        return solutionMatrix[m][n]65 66 def min(insert, delete, edit):67     tmp = insert if insert < delete else delete68     
        return tmp if tmp < edit else edit69 70 s1 = "abc"71 s2 = "def"72 distance = levenshtein(s1, s2)73 print(distance)
登录后复制

 

以上是字符串的编辑距离实例详解的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP中int类型转字符串的方法详解 PHP中int类型转字符串的方法详解 Mar 26, 2024 am 11:45 AM

PHP中int类型转字符串的方法详解在PHP开发中,经常会遇到将int类型转换为字符串类型的需求。这种转换可以通过多种方式实现,本文将详细介绍几种常用的方法,并附带具体的代码示例来帮助读者更好地理解。一、使用PHP内置函数strval()PHP提供了一个内置函数strval(),可以将不同类型的变量转换为字符串类型。当我们需要将int类型转换为字符串类型时,

Golang字符串是否以指定字符结尾的判断方法 Golang字符串是否以指定字符结尾的判断方法 Mar 12, 2024 pm 04:48 PM

标题:Golang中判断字符串是否以指定字符结尾的方法在Go语言中,有时候我们需要判断一个字符串是否以特定的字符结尾,这在处理字符串时十分常见。本文将介绍如何使用Go语言来实现这一功能,同时提供代码示例供大家参考。首先,让我们来看一下Golang中如何判断一个字符串是否以指定字符结尾的方法。Golang中的字符串可以通过索引来获取其中的字符,而字符串的长度可

python怎么重复字符串_python重复字符串教程 python怎么重复字符串_python重复字符串教程 Apr 02, 2024 pm 03:58 PM

1、首先打开pycharm,进入到pycharm主页。2、然后新建python脚本,右键--点击new--点击pythonfile。3、输入一段字符串,代码:s="-"。4、接着需要把字符串里面的符号重复20次,代码:s1=s*20。5、输入打印输出代码,代码:print(s1)。6、最后运行脚本,在最底部会看到我们的返回值:-就重复了20次。

Golang中如何检查字符串是否以特定字符开头? Golang中如何检查字符串是否以特定字符开头? Mar 12, 2024 pm 09:42 PM

Golang中如何检查字符串是否以特定字符开头?在使用Golang编程时,经常会遇到需要检查一个字符串是否以特定字符开头的情况。针对这一需求,我们可以使用Golang中的strings包提供的函数来实现。接下来将详细介绍如何使用Golang检查字符串是否以特定字符开头,并附上具体的代码示例。在Golang中,我们可以使用strings包中的HasPrefix

如何在Go语言中截取字符串 如何在Go语言中截取字符串 Mar 13, 2024 am 08:33 AM

Go语言是一种强大且灵活的编程语言,它提供了丰富的字符串处理功能,包括字符串截取。在Go语言中,我们可以使用切片(slice)来截取字符串。接下来,将详细介绍如何在Go语言中截取字符串,并附上具体的代码示例。一、使用切片截取字符串在Go语言中,可以使用切片表达式来截取字符串的一部分。切片表达式的语法如下:slice:=str[start:end]其中,s

解决PHP中16进制转字符串出现中文乱码的方法 解决PHP中16进制转字符串出现中文乱码的方法 Mar 04, 2024 am 09:36 AM

解决PHP中16进制转字符串出现中文乱码的方法在PHP编程中,有时候我们会遇到需要将16进制表示的字符串转换为正常的中文字符的情况。然而,在进行这个转换的过程中,有时会遇到中文乱码的问题。这篇文章将为您提供解决PHP中16进制转字符串出现中文乱码的方法,并给出具体的代码示例。使用hex2bin()函数进行16进制转换PHP内置的hex2bin()函数可以将1

PHP字符串匹配技巧:避免模糊包含表达式 PHP字符串匹配技巧:避免模糊包含表达式 Feb 29, 2024 am 08:06 AM

PHP字符串匹配技巧:避免模糊包含表达式在PHP开发中,字符串匹配是一个常见的任务,通常用于查找特定的文本内容或验证输入的格式。然而,有时候我们需要避免使用模糊的包含表达式来确保匹配的准确性。本文将介绍一些在PHP中进行字符串匹配时避免模糊包含表达式的技巧,并提供具体的代码示例。使用preg_match()函数进行精确匹配在PHP中,可以使用preg_mat

PHP字符串操作:有效去除空格的实用方法 PHP字符串操作:有效去除空格的实用方法 Mar 24, 2024 am 11:45 AM

PHP字符串操作:有效去除空格的实用方法在PHP开发中,经常会遇到需要对字符串进行去除空格操作的情况。去除空格可以使得字符串更加整洁,方便后续的数据处理和显示。本文将介绍几种有效的去除空格的实用方法,并附上具体的代码示例。方法一:使用PHP内置函数trim()PHP内置函数trim()可以去除字符串两端的空格(包括空格、制表符、换行符等),非常方便且简单易用

See all articles