python中关于for循环的实例详解
这篇文章主要介绍了python中关于for循环使用过程中的碎碎念,需要的朋友可以参考下
为什么要挑战自己在代码里不写for loop?因为这样可以迫使你去使用比较高级、地道的语法或库。文中以python为例子,讲了不少大家其实在别人的代码里都见过、但自己很少用的语法。
这是一个挑战。我要你避免在任何情况下写for循环。同样的,我也要你找到一种场景——除了用for循环以外,用其他方法写都太难。请分享你的发现,我非常想听到这些
距离我开始探索超棒的Python语言特性已经有一段时间了。一开始,这只是我给自己的一个挑战,练习使用更多的语言特性来替代我从其他编程语言那里所学到的。但是事情渐渐变得更有趣了!代码不止变得更简短整洁,而且看起来更加结构化和有规律,在这篇文章中我将更多地介绍这些好处。
首先,让我们退一步看看在写一个for循环背后的直觉是什么:
1.遍历一个序列提取出一些信息
2.从当前的序列中生成另外的序列
3.写for循环已经是我的第二天性了,因为我是一个程序员
幸运的是,Python里面已经有很棒的工具帮你达到这些目标!你需要做的只是转变思想,用不同的角度看问题。
不到处写for循环你将会获得什么
1.更少的代码行数
2.更好的代码阅读性
3.只将缩进用于管理代码文本
Let's see the code skeleton below:
看看下面这段代码的构架:
# 1 with ...: for ...: if ...: try: except: else:
这个例子使用了多层嵌套的代码,这是非常难以阅读的。我在这段代码中发现它无差别使用缩进把管理逻辑(with, try-except)和业务逻辑(for, if)混在一起。如果你遵守只对管理逻辑使用缩进的规范,那么核心业务逻辑应该立刻脱离出来。
“扁平结构比嵌套结构更好” – 《Python之禅》
为了避免for循环,你可以使用这些工具
看一个简单的例子,这个例子主要是根据一个已经存在的序列编译一个新序列:
result = [] for item in item_list: new_item = do_something_with(item) result.append(item)
如果你喜欢MapReduce,那你可以使用map,或者Python的列表解析:
result = [do_something_with(item) for item in item_list]
同样的,如果你只是想要获取一个迭代器,你可以使用语法几乎相通的生成器表达式。(你怎么能不爱上Python的一致性?)
result = (do_something_with(item) for item in item_list)
2. 函数
站在更高阶、更函数化的变成方式考虑一下,如果你想映射一个序列到另一个序列,直接调用map函数。(也可用列表解析来替代。)
doubled_list = map(lambda x: x * 2, old_list)
如果你想使一个序列减少到一个元素,使用reduce
from functools import reduce summation = reduce(lambda x, y: x + y, numbers)
另外,Python中大量的内嵌功能可/会(我不知道这是好事还是坏事,你选一个,不加这个句子有点难懂)消耗迭代器:
>>> a = list(range(10)) >>> a [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> all(a) False >>> any(a) True >>> max(a) 9 >>> min(a) 0 >>> list(filter(bool, a)) [1, 2, 3, 4, 5, 6, 7, 8, 9] >>> set(a) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} >>> dict(zip(a,a)) {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9} >>> sorted(a, reverse=True) [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] >>> str(a) '[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]' >>> sum(a) 45
3. 抽取函数或者表达式
上面的两种方法很好地处理了较为简单的逻辑,那更复杂的逻辑怎么办呢?作为一个程序员,我们会把困难的事情抽象成函数,这种方式也可以用在这里。如果你写下了这种代码:
results = [] for item in item_list: # setups # condition # processing # calculation results.append(result)
显然你赋予了一段代码太多的责任。为了改进,我建议你这样做:
def process_item(item): # setups # condition # processing # calculation return result results = [process_item(item) for item in item_list]
嵌套的for循环怎么样?
results = [] for i in range(10): for j in range(i): results.append((i, j))
列表解析可以帮助你:
results = [(i, j) for i in range(10) for j in range(i)]
如果你要保存很多的内部状态怎么办呢?
# finding the max prior to the current item a = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8] results = [] current_max = 0 for i in a: current_max = max(i, current_max) results.append(current_max) # results = [3, 4, 6, 6, 6, 9, 9, 9, 9, 9]
让我们提取一个表达式来实现这些:
def max_generator(numbers): current_max = 0 for i in numbers: current_max = max(i, current_max) yield current_max a = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8] results = list(max_generator(a))
“等等,你刚刚在那个函数的表达式中使用了一个for循环,这是欺骗!”
好吧,自作聪明的家伙,试试下面的这个。
4. 你自己不要写for循环,itertools会为你代劳
这个模块真是妙。我相信这个模块能覆盖80%你想写下for循环的时候。例如,上一个例子可以这样改写:
from itertools import accumulate a = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8] resutls = list(accumulate(a, max))
另外,如果你在迭代组合的序列,还有product(),permutations(),combinations()可以用。
结论
1.大多数情况下是不需要写for循环的。
2.应该避免使用for循环,这样会使得代码有更好的阅读性。
行动
1.再看一遍你的代码,找出任何以前凭直觉写下for循环的地方,再次思考一下,不用for循环再写一遍是不是有意义的。
2.分享你很难不使用for循环的例子。
以上是python中关于for循环的实例详解的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

VS Code 全称 Visual Studio Code,是一个由微软开发的免费开源跨平台代码编辑器和开发环境。它支持广泛的编程语言,提供语法高亮、代码自动补全、代码片段和智能提示等功能以提高开发效率。通过丰富的扩展生态系统,用户可以针对特定需求和语言添加扩展程序,例如调试器、代码格式化工具和 Git 集成。VS Code 还包含直观的调试器,有助于快速查找和解决代码中的 bug。

VS Code 扩展存在恶意风险,例如隐藏恶意代码、利用漏洞、伪装成合法扩展。识别恶意扩展的方法包括:检查发布者、阅读评论、检查代码、谨慎安装。安全措施还包括:安全意识、良好习惯、定期更新和杀毒软件。

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。
