目录
2 序列化操作
2.1 序列化方法pickle.dump()
2.2 序列化方法pickle.dumps()
2.3 序列化方法Pickler(file, protocol).dump(obj)
3 反序列化操作
3.1 反序列化方法pickle.load()
3.2 反序列化方法pickle.loads()
3.3 反序列化方法Unpickler(file).load()
4 那些类型可以进行序列化和反序列化操作
写在后面
首页 后端开发 Python教程 pickle库的使用详解

pickle库的使用详解

May 16, 2018 pm 05:42 PM
pickle python 序列化

在“通过简单示例来理解什么是机器学习”这篇文章里提到了pickle库的使用,本文来做进一步的阐述。

那么为什么需要序列化和反序列化这一操作呢?

  1. 便于存储。序列化过程将文本信息转变为二进制数据流。这样就信息就容易存储在硬盘之中,当需要读取文件的时候,从硬盘中读取数据,然后再将其反序列化便可以得到原始的数据。在Python程序运行中得到了一些字符串、列表、字典等数据,想要长久的保存下来,方便以后使用,而不是简单的放入内存中关机断电就丢失数据。python模块大全中的Pickle模块就派上用场了,它可以将对象转换为一种可以传输或存储的格式。

  2. loads()函数执行和load() 函数一样的反序列化。取代接受一个流对象并去文件读取序列化后的数据,它接受包含序列化后的数据的str对象, 直接返回的对象。

  3. 代码示例:

  4. [python] view plain copy
    #!/usr/bin/env python  
    # -*- coding: UTF-8 -*-  
    import cPickle as pickle   
    obj = 123, "abcdedf", ["ac", 123], {"key": "value", "key1": "value1"}  
    print obj# 输出:(123, 'abcdedf', ['ac', 123], {'key1': 'value1', 'key': 'value'})      
    # 序列化到文件    
    with open(r"d:\a.txt", "r+") as f:  
        pickle.dump(obj, f)      
    with open(r"d:\a.txt") as f:  
        print pickle.load(f)# 输出:(123, 'abcdedf', ['ac', 123], {'key1': 'value1', 'key': 'value'})    
    # 序列化到内存(字符串格式保存),然后对象可以以任何方式处理如通过网络传输    
    obj1 = pickle.dumps(obj)  
    print type(obj1)# 输出:<type &#39;str&#39;>    
    print obj1# 输出:python专用的存储格式    
      
    obj2 = pickle.loads(obj1)  
    print type(obj2)# 输出:<type &#39;tuple&#39;>    
    print obj2# 输出:(123, &#39;abcdedf&#39;, [&#39;ac&#39;, 123], {&#39;key1&#39;: &#39;value1&#39;, &#39;key&#39;: &#39;value&#39;})
    登录后复制

  2.便于传输。当两个进程在进行远程通信时,彼此可以发送各种类型的数据。无论是何种类型的数据,都会以二进制序列的形式在网络上传送。发送方需要把這个对象转换为字节序列,在能在网络上传输;接收方则需要把字节序列在恢复为对象。

  • 通过简单示例来理解什么是机器学习

pickle是python语言的一个标准模块,安装python后已包含pickle库,不需要单独再安装。
pickle模块实现了基本的数据序列化和反序列化。通过pickle模块的序列化操作我们能够将程序中运行的对象信息保存到文件中去,永久存储;通过pickle模块的反序列化操作,我们能够从文件中创建上一次程序保存的对象。
在官方的介绍中,序列化操作的英文描述有好几个单词,如”serializing”, “pickling”, “serialization”, “marshalling” 或者”flattening”等,它们都代表的是序列化的意思。相应的,反序列化操作的英文单词也有好多个,如”de-serializing”, “unpickling”, “deserailization”等。为了避免混淆,一般用”pickling”/“unpickling”, 或者”serialization”/“deserailization”。
pickle模块是以二进制的形式序列化后保存到文件中(保存文件的后缀为”.pkl”),不能直接打开进行预览。而python的另一个序列化标准模块json,则是human-readable的,可以直接打开查看(例如在notepad++中查看)。

pickle模块有两类主要的接口,即序列化和反序列化。

常采用这样的方式使用:

[python] view plain copy
import cPickle as pickle  
pickle.dump(obj,f)  
pickle.dumps(obj,f)  
pickle.load(f)  
pickle.loads(f)
登录后复制

其中序列化操作包括:

  • pickle.dump()
    登录后复制
  • 反序列化操作包括:

  • Pickler(file, protocol).dump(obj)
    登录后复制
  • pickle.load()

  • Unpickler(file).load()

2 序列化操作

2.1 序列化方法pickle.dump()

序列化的方法为 pickle.dump(),该方法的相关参数如下:
pickle.dump(obj, file, protocol=None,*,fix_imports=True)
该方法实现的是将序列化后的对象obj以二进制形式写入文件file中,进行保存。它的功能等同于 Pickler(file, protocol).dump(obj)
关于参数file,有一点需要注意,必须是以二进制的形式进行操作(写入)。
参考前文的案例如下:

import picklewith open(&#39;svm_model_iris.pkl&#39;, &#39;wb&#39;) as f:
    pickle.dump(svm_classifier, f)
登录后复制

file为’svm_model_iris.pkl’,并且以二进制的形式(’wb’)写入。

关于参数protocol,一共有5中不同的类型,即(0,1,2,3,4)。(0,1,2)对应的是python早期的版本,(3,4)则是在python3之后的版本。
此外,参数可选 pickle.HIGHEST_PROTOCOL和pickle.DEFAULT_PROTOCOL。当前,python3.5版本中,pickle.HIGHEST_PROTOCOL的值为4,pickle.DEFAULT_PROTOCOL的值为3。当protocol参数为负数时,表示选择的参数是pickle.HIGHEST_PROTOCOL。
关于参数protocol,官方的详细介绍如下:

8db8d74a28ed8bcee2373c7d021556ce-1.png

2.2 序列化方法pickle.dumps()

pickle.dumps()方法的参数如下:
pickle.dumps(obj, protocol=None,*,fix_imports=True)
pickle.dumps()方法跟pickle.dump()方法的区别在于,pickle.dumps()方法不需要写入文件中,它是直接返回一个序列化的bytes对象。

2.3 序列化方法Pickler(file, protocol).dump(obj)

pickle模块提供了序列化的面向对象的类方法,即 class pickle.Pickler(file, protocol=None,*,fix_imports=True),Pickler类有dump()方法。
Pickler(file, protocol).dump(obj) 实现的功能跟 pickle.dump() 是一样的。
关于Pickler类的其他method,请参考官方API。

插播一条硬广:技术文章转发太多,本文来自微信公众号:“Python数据之道”(ID:PyDataRoad)。

3 反序列化操作

3.1 反序列化方法pickle.load()

序列化的方法为 pickle.load(),该方法的相关参数如下:
pickle.load(file, *,fix_imports=True, encoding=”ASCII”. errors=”strict”)
该方法实现的是将序列化的对象从文件file中读取出来。它的功能等同于 Unpickler(file).load()
关于参数file,有一点需要注意,必须是以二进制的形式进行操作(读取)。
参考前文的案例如下:

import picklewith open(&#39;svm_model_iris.pkl&#39;, &#39;rb&#39;) as f:
    model = pickle.load(f)
登录后复制

file为’svm_model_iris.pkl’,并且以二进制的形式(’rb’)读取。

读取的时候,参数protocol是自动选择的,load()方法中没有这个参数。

3.2 反序列化方法pickle.loads()

pickle.loads()方法的参数如下:
pickle.loads(bytes_object, *,fix_imports=True, encoding=”ASCII”. errors=”strict”)
pickle.loads()方法跟pickle.load()方法的区别在于,pickle.loads()方法是直接从bytes对象中读取序列化的信息,而非从文件中读取。

3.3 反序列化方法Unpickler(file).load()

pickle模块提供了反序列化的面向对象的类方法,即 class pickle.Unpickler(file, *,fix_imports=True, encoding="ASCII". errors="strict"),Pickler类有load()方法。
Unpickler(file).load() 实现的功能跟 pickle.load() 是一样的。
关于Unpickler类的其他method,请参考官方API。

4 那些类型可以进行序列化和反序列化操作

官方文档是这么介绍的,这里我就不进一步描述了。

8db8d74a28ed8bcee2373c7d021556ce-1.png

写在后面

pickle模块还是比较实用的,当然,关于pickle模块,其实还有许多的信息可以去了解,想了解更多信息的童鞋,建议可以阅读下python官方的API文档(library文件)。

以上是pickle库的使用详解的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:解释了不同的范例 PHP和Python:解释了不同的范例 Apr 18, 2025 am 12:26 AM

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

在PHP和Python之间进行选择:指南 在PHP和Python之间进行选择:指南 Apr 18, 2025 am 12:24 AM

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

vscode怎么在终端运行程序 vscode怎么在终端运行程序 Apr 15, 2025 pm 06:42 PM

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率

vs code 可以在 Windows 8 中运行吗 vs code 可以在 Windows 8 中运行吗 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

PHP和Python:深入了解他们的历史 PHP和Python:深入了解他们的历史 Apr 18, 2025 am 12:25 AM

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

vscode 扩展是否是恶意的 vscode 扩展是否是恶意的 Apr 15, 2025 pm 07:57 PM

VS Code 扩展存在恶意风险,例如隐藏恶意代码、利用漏洞、伪装成合法扩展。识别恶意扩展的方法包括:检查发布者、阅读评论、检查代码、谨慎安装。安全措施还包括:安全意识、良好习惯、定期更新和杀毒软件。

visual studio code 可以用于 python 吗 visual studio code 可以用于 python 吗 Apr 15, 2025 pm 08:18 PM

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

See all articles