Python MySQL数据库中pymysqlpool是如何使用的?

零下一度
发布: 2017-07-09 11:57:26
原创
4085 人浏览过

这篇文章主要跟大家介绍了关于Python MySQL数据库连接池组件pymysqlpool的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面来一起看看吧。

引言

pymysqlpool (本地下载)是数据库工具包中新成员,目的是能提供一个实用的数据库连接池中间件,从而避免在应用中频繁地创建和释放数据库连接资源。

功能

  • 连接池本身是线程安全的,可在多线程环境下使用,不必担心连接资源被多个线程共享的问题;

  • 提供尽可能紧凑的接口用于数据库操作

  • 连接池的管理位于包内完成,客户端可以通过接口获取池中的连接资源(返回 pymysql.Connection);

  • 将最大程度地与 dataobj 等兼容,便于使用;

  • 连接池本身具备动态增加连接数的功能,即 max_pool_size 和 step_size 会用于控制每次增加的连接数和最大连接数;

  • 连接池最大连接数亦动态增加,需要开启 enable_auto_resize 开关,此后当任何一次连接获取超时发生,均记为一次惩罚,并且将 max_pool_size 扩大一定倍数。

基本工作流程

注意,当多线程同时请求时,若池中没有可用的连接对象,则需要排队等待

  • 初始化后优先创建 step_size 个连接对象,放在连接池中;

  • 客户端请求连接对象,连接池会从中挑选最近没使用的连接对象返回(同时会检查连接是否正常);

  • 客户端使用连接对象,执行相应操作后,调用接口返回连接对象;

  • 连接池回收连接对象,并将其加入池中的队列,供其它请求使用。


|--------|        |--------------|
|  | <==borrow connection object== | Pool manager |
| Client |        |    |
|  | ==return connection object==> | FIFO queue |
|--------|        |--------------|
登录后复制

参数配置

  • pool_name: 连接池的名称,多种连接参数对应多个不同的连接池对象,多单例模式

  • host: 数据库地址

  • user: 数据库服务器用户名

  • password: 用户密码

  • database: 默认选择的数据库

  • port: 数据库服务器的端口

  • charset: 字符集,默认为 ‘utf8'

  • use_dict_cursor: 使用字典格式或者元组返回数据;

  • max_pool_size: 连接池优先最大连接数;

  • step_size: 连接池动态增加连接数大小;

  • enable_auto_resize: 是否动态扩展连接池,即当超过 max_pool_size 时,自动扩展 max_pool_size;

  • pool_resize_boundary: 该配置为连接池最终可以增加的上上限大小,即时扩展也不可超过该值;

  • auto_resize_scale: 自动扩展 max_pool_size 的增益,默认为 1.5 倍扩展;

  • wait_timeout: 在排队等候连接对象时,最多等待多久,当超时时连接池尝试自动扩展当前连接数;

  • kwargs: 其他配置参数将会在创建连接对象时传递给 pymysql.Connection

使用示例

1、使用 cursor 上下文管理器(快捷方式,但每次获取都会申请连接对象,多次调用效率不高):


from pymysqlpool import ConnectionPool
config = {
 &#39;pool_name&#39;: &#39;test&#39;,
 &#39;host&#39;: &#39;localhost&#39;,
 &#39;port&#39;: 3306,
 &#39;user&#39;: &#39;root&#39;,
 &#39;password&#39;: &#39;root&#39;,
 &#39;database&#39;: &#39;test&#39;
}
def connection_pool():
 # Return a connection pool instance
 pool = ConnectionPool(**config)
 pool.connect()
 return pool
# 直接访问并获取一个 cursor 对象,自动 commit 模式会在这种方式下启用
with connection_pool().cursor() as cursor:
 print(&#39;Truncate table user&#39;)
 cursor.execute(&#39;TRUNCATE user&#39;)
 print(&#39;Insert one record&#39;)
 result = cursor.execute(&#39;INSERT INTO user (name, age) VALUES (%s, %s)&#39;, (&#39;Jerry&#39;, 20))
 print(result, cursor.lastrowid)
 print(&#39;Insert multiple records&#39;)
 users = [(name, age) for name in [&#39;Jacky&#39;, &#39;Mary&#39;, &#39;Micheal&#39;] for age in range(10, 15)]
 result = cursor.executemany(&#39;INSERT INTO user (name, age) VALUES (%s, %s)&#39;, users)
 print(result)
 print(&#39;View items in table user&#39;)
 cursor.execute(&#39;SELECT * FROM user&#39;)
 for user in cursor:
  print(user)
 print(&#39;Update the name of one user in the table&#39;)
 cursor.execute(&#39;UPDATE user SET name="Chris", age=29 WHERE id = 16&#39;)
 cursor.execute(&#39;SELECT * FROM user ORDER BY id DESC LIMIT 1&#39;)
 print(cursor.fetchone())
 print(&#39;Delete the last record&#39;)
 cursor.execute(&#39;DELETE FROM user WHERE id = 16&#39;)
登录后复制

2、使用 connection 上下文管理器:


import pandas as pd
from pymysqlpool import ConnectionPool
config = {
 &#39;pool_name&#39;: &#39;test&#39;,
 &#39;host&#39;: &#39;localhost&#39;,
 &#39;port&#39;: 3306,
 &#39;user&#39;: &#39;root&#39;,
 &#39;password&#39;: &#39;root&#39;,
 &#39;database&#39;: &#39;test&#39;
}
def connection_pool():
 # Return a connection pool instance
 pool = ConnectionPool(**config)
 pool.connect()
 return pool
with connection_pool().connection() as conn:
 pd.read_sql(&#39;SELECT * FROM user&#39;, conn)
# 或者
connection = connection_pool().borrow_connection()
pd.read_sql(&#39;SELECT * FROM user&#39;, conn)
connection_pool().return_connection(connection)
登录后复制

更多测试请移步 test_example.py。

依赖

  • pymysql:将依赖该工具包完成数据库的连接等操作;

  • pandas:测试时使用了 pandas。

以上是Python MySQL数据库中pymysqlpool是如何使用的?的详细内容。更多信息请关注PHP中文网其他相关文章!

相关标签:
来源:php.cn
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板