Python生成器的介绍与使用
python中的generator保存的是算法,真正需要计算出值的时候才会去往下计算出值。它是一种惰性计算(lazy evaluation)。
要创建一个generator有两种方式。
第一种方法:把一个列表生成式的[]改成(),就创建了一个generator:
>>> L = [x * x for x in range(10)]>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]>>> g = (x * x for x in range(10)) # 注意把[]改成()后,不是生成一个tuple,而是生成一个generator>>> g
第二种方式:在函数中使用yield关键字,函数就变成了一个generator。
函数里有了yield后,执行到yield就会停住,当需要再往下算时才会再往下算。所以生成器函数即使是有无限循环也没关系,它需要算到多少就会算多少,不需要就不往下算。
def fib():
a, b = 0, 1
while True:
yield a
a, b = b, a + b
f = fib()
print f, next(f), next(f), next(f)
#
如上例,第一次输出f,它就是一个generator,之后每次next,它就执行到yield a。
当然其实平常很少用到next(),我们直接用for循环就可以遍历一个generator,其实for循环的内部实现就是不停调用next()。
生成器可以避免不必要的计算,带来性能上的提升;而且会节约空间,可以实现无限循环(无穷大的)的数据结构。
生成器语法
生成器表达式: 通列表解析语法,只不过把列表解析的[]换成()
生成器表达式能做的事情列表解析基本都能处理,只不过在需要处理的序列比较大时,列表解析比较费内存。
生成器函数: 在函数中如果出现了yield关键字,那么该函数就不再是普通函数,而是生成器函数。
在Python中,yield就是这样的一个生成器。
yield 生成器的运行机制:
当你问生成器要一个数时,生成器会执行,直至出现 yield 语句,生成器把 yield 的参数给你,之后生成器就不会往下继续运行。 当你问他要下一个数时,他会从上次的状态。开始运行,直至出现yield语句,把参数给你,之后停下。如此反复 直至退出函数。
yield的使用:
在Python中,当你定义一个函数,使用了yield关键字时,这个函数就是一个生成器,它的执行会和其他普通的函数有很多不同,函数返回的是一个对象,而不是你平常 所用return语句那样,能得到结果值。如果想取得值,那得调用next()函数
下面以斐波拉契为例:
#coding:utf8 def fib(max): #10 n, a, b = 0, 0, 1 while n < max: #n<10 #print(b) yield b a, b = b, a + b n += 1 return f = fib(10) for i in f: print f
从上面的运行机制描述中,可以获知,程序运行到yield这行时,就不会继续往下执行。而是返回一个包含当前函数所有参数的状态的iterator对象。目的就是为了第二次被调用时,能够访问到函数所有的参数值都是第一次访问时的值,而不是重新赋值。
程序第一次调用时:
def fib(max): #10 n, a, b = 0, 0, 1 while n < max: #n<10 #print(b) yield b #这时a,b值分别为0,1,当然,程序也在执行到这时,返回 a, b = b, a + b
程序第二次调用时:
从前面可知,第一次调用时,a,b=0,0,那么,我们第二次调用时(其实就是调用第一次返回的iterator对象的next()方法),程序跳到yield语句处,
执行a,b = b, a+b语句,此时值变为:a,b = 0, (0+1) => a,b = 0, 1
程序继续while循环,当然,再一次碰到了yield a 语句,也是像第一次那样,保存函数所有参数的状态,返回一个包含这些参数状态的iterator对象。
等待第三次的调用....
通过上面的分析,可以一次类推的展示了yield的详细运行过程了!
通过使用生成器的语法,可以免去写迭代器类的繁琐代码,如,上面的例子使用迭代类来实现,代码如下:
#coding:UTF8 class Fib: def __init__(self, max): self.max = max print self.max def __iter__(self): self.a = 0 self.b = 1 self.n = 0 return self def next(self): fib = self.n if fib >= self.max: raise StopIteration self.a, self.b = self.b, self.a + self.b self.n += 1 return self.a f = Fib(10) for i in f: print i
yield 与 return
在一个生成器中,如果没有return,则默认执行到函数完毕时返回StopIteration;
如果遇到return,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。
如果在return后返回一个值,会直接报错,生成器没有办法使用return来返回值。
生成器支持的方法(借鉴别人的例子,感觉蛮好的)
close(...) | close() -> raise GeneratorExit inside generator. | | next(...) | x.next() -> the next value, or raise StopIteration | | send(...) | send(arg) -> send 'arg' into generator, | return next yielded value or raise StopIteration. | | throw(...) | throw(typ[,val[,tb]]) -> raise exception in generator, | return next yielded value or raise StopIteration.
close()
手动关闭生成器函数,后面的调用会直接返回StopIteration异常。
#coding:UTF8 def fib(): yield 1 yield 2 yield 3 f = fib() print f.next() f.close() print f.next()
send()
生成器函数最大的特点是可以接受外部传入的一个变量,并根据变量内容计算结果后返回。
这是生成器函数最难理解的地方,也是最重要的地方,
def gen(): value=0 while True: receive=yield value if receive=='e': break value = 'got: %s' % receive g=gen() print(g.send(None)) print(g.send('aaa')) print(g.send(3)) print(g.send('e'))
执行流程:
通过g.send(None)或者next(g)可以启动生成器函数,并执行到第一个yield语句结束的位置。此时,执行完了yield语句,但是没有给receive赋值。yield value会输出初始值0注意:在启动生成器函数时只能send(None),如果试图输入其它的值都会得到错误提示信息。
通过g.send(‘aaa’),会传入aaa,并赋值给receive,然后计算出value的值,并回到while头部,执行yield value语句有停止。此时yield value会输出”got: aaa”,然后挂起。
通过g.send(3),会重复第2步,最后输出结果为”got: 3″
当我们g.send(‘e’)时,程序会执行break然后推出循环,最后整个函数执行完毕,所以会得到StopIteration异常。
最后的执行结果如下:
0 got: aaa got: 3 Traceback (most recent call last): File "1.py", line 15, in <module> print(g.send('e')) StopIteration
throw()
用来向生成器函数送入一个异常,可以结束系统定义的异常,或者自定义的异常。
throw()后直接跑出异常并结束程序,或者消耗掉一个yield,或者在没有下一个yield的时候直接进行到程序的结尾。
def gen(): while True: try: yield 'normal value' yield 'normal value 2' print('here') except ValueError: print('we got ValueError here') except TypeError: break g=gen() print(next(g)) print(g.throw(ValueError)) print(next(g)) print(g.throw(TypeError))
执行流程:
print(next(g)):会输出normal value,并停留在yield ‘normal value 2’之前。
由于执行了g.throw(ValueError),所以会跳过所有后续的try语句,也就是说yield ‘normal value 2’不会被执行,然后进入到except语句,打印出we got ValueError here。然后再次进入到while语句部分,消耗一个yield,所以会输出normal value。
print(next(g)),会执行yield ‘normal value 2’语句,并停留在执行完该语句后的位置。
g.throw(TypeError):会跳出try语句,从而print(‘here’)不会被执行,然后执行break语句,跳出while循环,然后到达程序结尾,所以跑出StopIteration异常。
以上是Python生成器的介绍与使用的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率

VS Code 扩展存在恶意风险,例如隐藏恶意代码、利用漏洞、伪装成合法扩展。识别恶意扩展的方法包括:检查发布者、阅读评论、检查代码、谨慎安装。安全措施还包括:安全意识、良好习惯、定期更新和杀毒软件。
