目录
1 测试内容
2 测试结果
首页 后端开发 Python教程 Python: Pandas如何高效运算的方法

Python: Pandas如何高效运算的方法

Jul 19, 2017 pm 01:38 PM
pandas python 探讨

本文就Pandas的运行效率作一个对比的测试,来探讨用哪些方式,会使得运行效率较好。

测试环境如下:

  • windows 7, 64位

  • python 3.5

  • pandas 0.19.2

  • numpy 1.11.3

  • jupyter notebook

需要说明的是,不同的系统,不同的电脑配置,不同的软件环境,运行结果可能有些差异。就算是同一台电脑,每次运行时,运行结果也不完全一样。

1 测试内容

测试的内容为,分别用三种方法来计算一个简单的运算过程,即 a*a+b*b 。

三种方法分别是:

  1. python的for循环

  2. Pandas的Series

  3. Numpy的ndarray

首先构造一个DataFrame,数据量的大小,即DataFrame的行数,分别为10, 100, 1000, … ,直到10,000,000(一千万)。

然后在jupyter notebook中,用下面的代码分别去测试,来查看不同方法下的运行时间,做一个对比。

import pandas as pdimport numpy as np# 100分别用 10,100,...,10,000,000来替换运行list_a = list(range(100))# 200分别用 20,200,...,20,000,000来替换运行list_b = list(range(100,200))
print(len(list_a))
print(len(list_b))

df = pd.DataFrame({'a':list_a, 'b':list_b})
print('数据维度为:{}'.format(df.shape))
print(len(df))
print(df.head())
登录后复制
100
100
数据维度为:(100, 2)
100
   a    b
0  0  100
1  1  101
2  2  102
3  3  103
4  4  104
登录后复制
  • 执行运算, a*a + b*b

  • Method 1: for循环

%%timeit# 当DataFrame的行数大于等于1000000时,请用 %%time 命令for i in range(len(df)):
    df['a'][i]*df['a'][i]+df['b'][i]*df['b'][i]
登录后复制
100 loops, best of 3: 12.8 ms per loop
登录后复制
  • Method 2: Series

type(df['a'])
登录后复制
pandas.core.series.Series
登录后复制
%%timeit
df['a']*df['a']+df['b']*df['b']
登录后复制
The slowest run took 5.41 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 669 µs per loop
登录后复制
  • Method 3: ndarray

type(df['a'].values)
登录后复制
numpy.ndarray
登录后复制
%%timeit
df['a'].values*df['a'].values+df['b'].values*df['b'].values
登录后复制
10000 loops, best of 3: 34.2 µs per loop
登录后复制

2 测试结果

运行结果如下:

从运行结果可以看出,for循环明显比Series和ndarray要慢很多,并且数据量越大,差异越明显。当数据量达到一千万行时,for循环的表现也差一万倍以上。 而Series和ndarray之间的差异则没有那么大。

PS: 1000万行时,for循环运行耗时特别长,各位如果要测试,需要注意下,请用 %%time 命令(只测试一次)。

下面通过图表来对比下Series和ndarray之间的表现。

从上图可以看出,当数据小于10万行时,ndarray的表现要比Series好些。而当数据行数大于100万行时,Series的表现要稍微好于ndarray。当然,两者的差异不是特别明显。

所以一般情况下,个人建议,for循环,能不用则不用,而当数量不是特别大时,建议使用ndarray(即df[‘col’].values)来进行计算,运行效率相对来说要好些。

以上是Python: Pandas如何高效运算的方法的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:解释了不同的范例 PHP和Python:解释了不同的范例 Apr 18, 2025 am 12:26 AM

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

在PHP和Python之间进行选择:指南 在PHP和Python之间进行选择:指南 Apr 18, 2025 am 12:24 AM

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

PHP和Python:深入了解他们的历史 PHP和Python:深入了解他们的历史 Apr 18, 2025 am 12:25 AM

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

vs code 可以在 Windows 8 中运行吗 vs code 可以在 Windows 8 中运行吗 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

visual studio code 可以用于 python 吗 visual studio code 可以用于 python 吗 Apr 15, 2025 pm 08:18 PM

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

vscode怎么在终端运行程序 vscode怎么在终端运行程序 Apr 15, 2025 pm 06:42 PM

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率

vscode 扩展是否是恶意的 vscode 扩展是否是恶意的 Apr 15, 2025 pm 07:57 PM

VS Code 扩展存在恶意风险,例如隐藏恶意代码、利用漏洞、伪装成合法扩展。识别恶意扩展的方法包括:检查发布者、阅读评论、检查代码、谨慎安装。安全措施还包括:安全意识、良好习惯、定期更新和杀毒软件。

See all articles