首页 后端开发 Python教程 Python开发之多个定时任务在单线程下执行的实例分析

Python开发之多个定时任务在单线程下执行的实例分析

Jul 27, 2017 pm 04:03 PM
python 任务 定时

单线程多定时任务 

1、初始版本:

思路:定时器,说白了就是延时执行指定的程序,目前自己重构python里面的定时器不太现实,能力达不到,所以延时操作时还得用到系统定时器,不过我们可以改一下规则;把所有要进行定时操作的程序添加到特定列表中,把列表中定时时间最短程序拿出来,进行threading.Timer(time,callback)绑定,等时间超时触发自定义的callback,执行刚刚列表取出的程序;然后把时间更新,再次把列表中时间最短的程序拿出了,继续threading.Timer绑定,不断的迭代循环;当有新的定时任务加入到列表时,把当前的threading.Timer绑定取消,更新列表中的时间,再次取出最短时间,进行threading.Timer绑定......

代码:


import threading
import time

class Timer():
    '''单线程下的定时器'''

    def __init__(self):
        self.queues = []
        self.timer = None
        self.last_time = time.time()

    def start(self):
        item = self.get()
        if item:
            self.timer = threading.Timer(item[0],self.execute)
            self.timer.start()

    def add(self,item):
        print('add',item)
        self.flush_time()
        self.queues.append(item)
        self.queues.sort(key=lambda x:x[0])

        if self.timer:
            self.timer.cancel()
            self.timer = None
        self.start()

    def get(self):
        item = None
        if len(self.queues) > 0:
            item = self.queues[0]
        return item

    def pop(self):
        item = None
        if len(self.queues) > 0:
            item = self.queues.pop(0)
        return item

    def flush_time(self):
        curr_time = time.time()
        for i in self.queues:
            i[0] = i[0] - (curr_time - self.last_time)
        self.last_time = curr_time

    def execute(self):
        # if self.timer:
        #     self.timer.cancel()
        #     self.timer = None
        item = self.pop()
        self.flush_time()
        if item:
            callback = item[1]
            args = item[0]
            callback(args)
        self.start()
登录后复制

执行及输出:


if __name__ == '__main__':    # 检测线程数
    def func():        while True:            print(threading.active_count())
            time.sleep(1)
    
    f1 = threading.Thread(target=func)
    f1.start()    
    import logging
    logging.basicConfig(level=logging.INFO,format="%(asctime)s %(message)s", datefmt="%m/%d/%Y %H:%M:%S [%A]")    def func1(*args):
        logging.info('func1 %s'%args)        # time.sleep(5)
    
    def func2(*args):
        logging.info('func2 %s' % args)        # time.sleep(5)
    def func3(*args):
        logging.info('func3 %s' % args)        # time.sleep(5)
    
    def func4(*args):
        logging.info('func4 %s' % args)        # time.sleep(5)
    
    def func5(*args):
        logging.info('func5 %s' % args)        # time.sleep(5)
    
    
    # 测试
    t1 = Timer()
    logging.info('start')
    t1.add([5,func1])
    time.sleep(0.5)
    t1.add([4,func2])
    time.sleep(0.5)
    t1.add([3,func3])
    time.sleep(0.5)
    t1.add([2,func4])
    time.sleep(0.5)
    t1.add([1,func5])
    time.sleep(5)
    t1.add([1,func1])
    t1.add([2,func2])
    t1.add([3,func3])
    t1.add([4,func4])
    t1.add([5,func5])    
    # 输出
    # 2
    # 07/27/2017 10:36:47 [Thursday] start
    # add [5, <function func1 at 0x000000D79FC77E18>]
    # add [4, <function func2 at 0x000000D79FCA8488>]
    # 3
    # add [3, <function func3 at 0x000000D79FCA8510>]
    # add [2, <function func4 at 0x000000D79FCA8598>]
    # 3
    # add [1, <function func5 at 0x000000D79FCA8620>]
    # 3
    # 07/27/2017 10:36:50 [Thursday] func5 1
    # 07/27/2017 10:36:51 [Thursday] func4 0.498349666595459
    # 3
    # 07/27/2017 10:36:51 [Thursday] func3 0.49782633781433105
    # 07/27/2017 10:36:52 [Thursday] func2 0.49848270416259766
    # 3
    # 07/27/2017 10:36:52 [Thursday] func1 0.48449039459228516
    # 2
    # 2
    # add [1, <function func1 at 0x000000D79FC77E18>]
    # add [2, <function func2 at 0x000000D79FCA8488>]
    # add [3, <function func3 at 0x000000D79FCA8510>]
    # add [4, <function func4 at 0x000000D79FCA8598>]
    # add [5, <function func5 at 0x000000D79FCA8620>]
    # 3
    # 07/27/2017 10:36:55 [Thursday] func1 0.9990766048431396
    # 3
    # 07/27/2017 10:36:56 [Thursday] func2 0.9988017082214355
    # 3
    # 07/27/2017 10:36:57 [Thursday] func3 0.99928879737854
    # 07/27/2017 10:36:58 [Thursday] func4 0.9991350173950195
    # 3
    # 3
    # 07/27/2017 10:36:59 [Thursday] func5 0.9988160133361816
登录后复制

执行代码

注:查看代码输出,所有的定时器都按照标定的时间依次执行,非常完美,一切看起来很美好,只是看起来,呵呵哒,当你把func里面的time.sleep(5)启用后,线程数蹭蹭的上来了;原因是上个定时器callback还是执行中,下个定时器已经启动了,这时就又新增了一个线程,哎,失败

2、修订版本

思路:利用生成者消费者模型,用到threading.Condition条件变量;强制永远启用的是一个Timer!

代码:


import time
import threading
import logging

class NewTimer(threading.Thread):
    &#39;&#39;&#39;单线程下的定时器&#39;&#39;&#39;
    def __init__(self):
        super().__init__()
        self.queues = []
        self.timer = None
        self.cond = threading.Condition()

    def run(self):
        while True:
            # print(&#39;NewTimer&#39;,self.queues)
            self.cond.acquire()
            item = self.get()
            callback = None
            if not item:
                logging.info(&#39;NewTimer wait&#39;)
                self.cond.wait()
            elif item[0] <= time.time():
                new_item = self.pop()
                callback = new_item[1]
            else:
                logging.info(&#39;NewTimer start sys timer and wait&#39;)
                self.timer = threading.Timer(item[0]-time.time(),self.execute)
                self.timer.start()
                self.cond.wait()
            self.cond.release()

            if callback:
                callback(item[0])

    def add(self, item):
        # print(&#39;add&#39;, item)
        self.cond.acquire()
        item[0] = item[0] + time.time()
        self.queues.append(item)
        self.queues.sort(key=lambda x: x[0])
        logging.info(&#39;NewTimer add notify&#39;)
        if self.timer:
            self.timer.cancel()
            self.timer = None
        self.cond.notify()
        self.cond.release()

    def pop(self):
        item = None
        if len(self.queues) > 0:
            item = self.queues.pop(0)
        return item

    def get(self):
        item = None
        if len(self.queues) > 0:
            item = self.queues[0]
        return item

    def execute(self):
        logging.info(&#39;NewTimer execute notify&#39;)
        self.cond.acquire()
        self.cond.notify()
        self.cond.release()
登录后复制

执行及输出:


if __name__ == &#39;__main__&#39;:    def func():        while True:            print(threading.active_count())
            time.sleep(1)

    f1 = threading.Thread(target=func)
    f1.start()
    logging.basicConfig(level=logging.INFO,format="%(asctime)s %(message)s", datefmt="%m/%d/%Y %H:%M:%S [%A]")

    newtimer = NewTimer()
    newtimer.start()    def func1(*args):
        logging.info(&#39;func1 %s&#39;%args)
        time.sleep(5)    def func2(*args):
        logging.info(&#39;func2 %s&#39; % args)
        time.sleep(5)    def func3(*args):
        logging.info(&#39;func3 %s&#39; % args)
        time.sleep(5)    def func4(*args):
        logging.info(&#39;func4 %s&#39; % args)
        time.sleep(5)    def func5(*args):
        logging.info(&#39;func5 %s&#39; % args)
        time.sleep(5)

    newtimer.add([5,func1])
    newtimer.add([4,func2])
    newtimer.add([3,func3])
    newtimer.add([2,func4])
    newtimer.add([1,func5])
    time.sleep(1)
    newtimer.add([1,func1])
    newtimer.add([2,func2])
    newtimer.add([3,func3])
    newtimer.add([4,func4])
    newtimer.add([5,func5])# 输出# 2# 07/27/2017 11:26:19 [Thursday] NewTimer wait# 07/27/2017 11:26:19 [Thursday] NewTimer add notify# 07/27/2017 11:26:19 [Thursday] NewTimer add notify# 07/27/2017 11:26:19 [Thursday] NewTimer add notify# 07/27/2017 11:26:19 [Thursday] NewTimer add notify# 07/27/2017 11:26:19 [Thursday] NewTimer add notify# 07/27/2017 11:26:19 [Thursday] NewTimer start sys timer and wait# 07/27/2017 11:26:20 [Thursday] NewTimer execute notify# 4# 07/27/2017 11:26:20 [Thursday] func5 1501125980.2175007# 07/27/2017 11:26:20 [Thursday] NewTimer add notify# 07/27/2017 11:26:20 [Thursday] NewTimer add notify# 07/27/2017 11:26:20 [Thursday] NewTimer add notify# 07/27/2017 11:26:20 [Thursday] NewTimer add notify# 07/27/2017 11:26:20 [Thursday] NewTimer add notify# 3# 3# 3# 3# 3# 07/27/2017 11:26:25 [Thursday] func4 1501125981.2175007# 3# 3# 3# 3# 07/27/2017 11:26:30 [Thursday] func1 1501125981.218279# 3# 3# 3# 3# 3# 3# 07/27/2017 11:26:35 [Thursday] func3 1501125982.2175007# 3# 3# 3# 3# 07/27/2017 11:26:40 [Thursday] func2 1501125982.218279# 3# 3# 3# 3# 3# 07/27/2017 11:26:45 [Thursday] func2 1501125983.2175007# 3# 3# 3# 3# 3# 07/27/2017 11:26:50 [Thursday] func3 1501125983.218279# 3# 3# 3# 3# 3# 07/27/2017 11:26:55 [Thursday] func1 1501125984.2175007# 3# 3# 3# 3# 3# 07/27/2017 11:27:00 [Thursday] func4 1501125984.218279# 3# 3# 3# 3# 3# 07/27/2017 11:27:05 [Thursday] func5 1501125985.218279# 3# 3# 3# 3# 3# 07/27/2017 11:27:10 [Thursday] NewTimer wait
登录后复制

输出

注:这次无论如何测试线程数也不会蹭蹭的上涨,同时可以实现多定时器任务要求;缺点:用到了两线程,没有用到单线程去实现,第二时间精准度问题,需要等待上个定时程序执行完毕,程序才能继续运行

以上是Python开发之多个定时任务在单线程下执行的实例分析的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:代码示例和比较 PHP和Python:代码示例和比较 Apr 15, 2025 am 12:07 AM

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

CentOS上如何进行PyTorch模型训练 CentOS上如何进行PyTorch模型训练 Apr 14, 2025 pm 03:03 PM

在CentOS系统上高效训练PyTorch模型,需要分步骤进行,本文将提供详细指南。一、环境准备:Python及依赖项安装:CentOS系统通常预装Python,但版本可能较旧。建议使用yum或dnf安装Python3并升级pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。CUDA与cuDNN(GPU加速):如果使用NVIDIAGPU,需安装CUDATool

docker原理详解 docker原理详解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

Python vs. JavaScript:社区,图书馆和资源 Python vs. JavaScript:社区,图书馆和资源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

CentOS上PyTorch的GPU支持情况如何 CentOS上PyTorch的GPU支持情况如何 Apr 14, 2025 pm 06:48 PM

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

CentOS下PyTorch版本怎么选 CentOS下PyTorch版本怎么选 Apr 14, 2025 pm 02:51 PM

在CentOS下选择PyTorch版本时,需要考虑以下几个关键因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU并且希望利用GPU加速,需要选择支持相应CUDA版本的PyTorch。可以通过运行nvidia-smi命令查看你的显卡支持的CUDA版本。CPU版本:如果没有GPU或不想使用GPU,可以选择CPU版本的PyTorch。2.Python版本PyTorch

minio安装centos兼容性 minio安装centos兼容性 Apr 14, 2025 pm 05:45 PM

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

CentOS上PyTorch的分布式训练如何操作 CentOS上PyTorch的分布式训练如何操作 Apr 14, 2025 pm 06:36 PM

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

See all articles