Python基础教程之with、contextlib的实例用法详解
这篇文章主要介绍了Python中with及contextlib的用法,结合实例形式较为详细的分析了with及contextlib的功能、使用方法与相关注意事项,需要的朋友可以参考下
本文实例讲述了Python中with及contextlib的用法。分享给大家供大家参考,具体如下:
平常Coding过程中,经常使用到的with场景是(打开文件进行文件处理,然后隐式地执行了文件句柄的关闭,同样适合socket之类的,这些类都提供了对with的支持):
with file('test.py','r') as f : print f.readline()
with的作用,类似try...finally...,提供一种上下文机制,要应用with语句的类,其内部必须提供两个内置函数__enter__以及__exit__。前者在主体代码执行前执行,后则在主体代码执行后执行。as后面的变量,是在__enter__函数中返回的。通过下面这个代码片段以及注释说明,可以清晰明白__enter__与__exit__的用法:
#!encoding:utf-8 class echo : def output(self) : print 'hello world' def __enter__(self): print 'enter' return self #返回自身实例,当然也可以返回任何希望返回的东西 def __exit__(self, exception_type, exception_value, exception_traceback): #若发生异常,会在这里捕捉到,可以进行异常处理 print 'exit' #如果改__exit__可以处理改异常则通过返回True告知该异常不必传播,否则返回False if exception_type == ValueError : return True else: return False with echo() as e: e.output() print 'do something inside' print '-----------' with echo() as e: raise ValueError('value error') print '-----------' with echo() as e: raise Exception('can not detect')
运行结果:
contextlib是为了加强with语句,提供上下文机制的模块,它是通过Generator实现的。通过定义类以及写__enter__和__exit__来进行上下文管理虽然不难,但是很繁琐。contextlib中的contextmanager作为装饰器来提供一种针对函数级别的上下文管理机制。常用框架如下:
from contextlib import contextmanager @contextmanager def make_context() : print 'enter' try : yield {} except RuntimeError, err : print 'error' , err finally : print 'exit' with make_context() as value : print value
contextlib还有连个重要的东西,一个是nested,一个是closing,前者用于创建嵌套的上下文,后则用于帮你执行定义好的close函数。但是nested已经过时了,因为with已经可以通过多个上下文的直接嵌套了。下面是一个例子:
from contextlib import contextmanager from contextlib import nested from contextlib import closing @contextmanager def make_context(name) : print 'enter', name yield name print 'exit', name with nested(make_context('A'), make_context('B')) as (a, b) : print a print b with make_context('A') as a, make_context('B') as b : print a print b class Door(object) : def open(self) : print 'Door is opened' def close(self) : print 'Door is closed' with closing(Door()) as door : door.open()
运行结果:
总结:python有很多强大的特性,由于我们平常总习惯于之前C 或java的一些编程习惯,时常忽略这些好的机制。因此,要学会使用这些python特性,让我们写的python程序更像是python。
以上是Python基础教程之with、contextlib的实例用法详解的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

在 Sublime Text 中运行 Python 代码,需先安装 Python 插件,再创建 .py 文件并编写代码,最后按 Ctrl B 运行代码,输出会在控制台中显示。

在 Visual Studio Code(VSCode)中编写代码简单易行,只需安装 VSCode、创建项目、选择语言、创建文件、编写代码、保存并运行即可。VSCode 的优点包括跨平台、免费开源、强大功能、扩展丰富,以及轻量快速。

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

在 Notepad 中运行 Python 代码需要安装 Python 可执行文件和 NppExec 插件。安装 Python 并为其添加 PATH 后,在 NppExec 插件中配置命令为“python”、参数为“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通过快捷键“F6”运行 Python 代码。
