Python中迭代器和生成器的示例详解
迭代器
Iterable
定义
class Iterable(metaclass=ABCMeta): __slots__ = () @abstractmethod def __iter__(self): while False: yield None @classmethod def __subclasshook__(cls, C): if cls is Iterable: if any("__iter__" in B.__dict__ for B in C.__mro__): return True return NotImplemented
由定义可知Iterable
必然包含__iter__
函数
Iterator
定义
class Iterator(Iterable): __slots__ = () @abstractmethod def __next__(self): 'Return the next item from the iterator. When exhausted, raise StopIteration' raise StopIteration def __iter__(self): return self @classmethod def __subclasshook__(cls, C): if cls is Iterator: if (any("__next__" in B.__dict__ for B in C.__mro__) and any("__iter__" in B.__dict__ for B in C.__mro__)): return True return NotImplemented
从定义可知Iterator
包含__next__
和__iter__
函数,当next超出范围时将抛出StopIteration
事件
类型关系
#! /usr/bin/python #-*-coding:utf-8-*- from collections import Iterator,Iterable # 迭代器 s = 'abc' l = [1,2,3] d=iter(l) print(isinstance(s,Iterable)) # True print(isinstance(l,Iterable)) # True print(isinstance(s,Iterator)) # False print(isinstance(l,Iterator)) # False print(isinstance(d,Iterable)) # True print(isinstance(d,Iterator)) # True
理论上你可以使用next()
来执行__next__()
,直到迭代器抛出StopIteration
实际上系统提供了for .. in ..
的方式来解析迭代器
l = [1,2,3,4] for i in l: print(i) # 执行结果 # 1 # 2 # 3 # 4
生成器 generator
生成器的本质是一个迭代器
#! /usr/bin/python #-*-coding:utf-8-*- from collections import Iterator,Iterable s = (x*2 for x in range(5)) print(s) print('Is Iterable:' + str(isinstance(s,Iterable))) print('Is Iterator:' + str(isinstance(s,Iterator))) for x in s: print(x) # 执行结果 # <generator object <genexpr> at 0x000001E61C11F048> # Is Iterable:True # Is Iterator:True # 0 # 2 # 4 # 6 # 8
函数中如果存在yield
则该函数是一个生成器对象 在每一次执行next
函数时该函数会在上一个yield
处开始执行,并在下一个yield
处返回(相当于return
)
def foo(): print("First") yield 1 print("Second") yield 2 f = foo() print(f) a = next(f) print(a) b = next(f) print(b) # <generator object foo at 0x0000020B697F50F8> # First # 1 # Second # 2
实例
#! /usr/bin/python #-*-coding:utf-8-*- def add(s,x): return s+x def gen(): for i in range(4): yield i base = gen() # 由于gen函数中存在yield,所以 # for 循环本质是创建了两个generator object,而非执行函数 # base = (add(i,10) for i in base) # base = (add(i,10) for i in base) for n in [1,10]: base = (add(i,n) for i in base) # 这里才开始展开生成器 # 第一个生成器展开 # base = (add(i,10) for i in base) # base = (add(i,10) for i in range(4)) # base = (10,11,12,13) # # 第二个生成器展开 # base = (add(i,10) for i in (10,11,12,13)) # base = (20,21,22,23) print(list(base)) # [20,21,22,23]
以上是Python中迭代器和生成器的示例详解的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

在使用Python的pandas库时,如何在两个结构不同的DataFrame之间进行整列复制是一个常见的问题。假设我们有两个Dat...

Python参数注解的另类用法在Python编程中,参数注解是一种非常有用的功能,可以帮助开发者更好地理解和使用函...

Python跨平台桌面应用开发库的选择许多Python开发者都希望开发出能够在Windows和Linux系统上都能运行的桌面应用程...

Python脚本如何在特定位置清空输出到光标位置?在编写Python脚本时,如何清空之前的输出到光标位置是个常见的...

为什么我的代码无法获取API返回的数据?在编程中,我们常常会遇到API调用时返回空值的问题,这不仅让人困惑...

Uvicorn是如何持续监听HTTP请求的?Uvicorn是一个基于ASGI的轻量级Web服务器,其核心功能之一便是监听HTTP请求并进�...

在Python中,如何通过字符串动态创建对象并调用其方法?这是一个常见的编程需求,尤其在需要根据配置或运行...
