Python之property()装饰器的使用详解
1. 何为装饰器?
官方定义:装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的有插入日志、性能测试、事务处理等。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。
Python中总共包括三个内置装饰器:
① staticmethod
② classmethod
③ property
2. 属性函数 property() 浅谈
2.1 为什么要使用 property?
通常,我们在访问属性和给属性赋值的时候,都是对 类和实例 __dict__ 打交道的;但如果我们想要规范属性访问,有两种方式可用:①数据描述符 ,②. property() 属性函数。
然而,我们知道,描述符相对比较复杂,对于新手来说,用起来很吃力,那么不妨试试property(),相对于描述符这个大的进程,property就相当于线程。
2.2 函数原型:
property(fget=None, fset=None, fdel=None, doc=None)
2.3 普通方法定义:
假设 calss Normal中有一个私有变量 __x,如下代码所示:
#code 1 class Normal: def __init__(self): self.__x = None def getx(self): return self.__x def setx(self, value): self.__x = value def delx(self): del self.__x tN = Normal() print(tN.__count)
输出结果(报错了)
Traceback (most recent call last): File "C:/Users/Administrator/AppData/Local/Programs/Python/Python35/property.py", line 15, in <module> print(tN.__count) AttributeError: 'Normal' object has no attribute '__count'
为啥报错了呢?因为 实例tN的属性 __x 为私有属性,不能直接访问,为此我们只能调用内部定义的 方法;
tN = Normal() tN.setx(10) print(tN.getx())
输出结果:
6 10
使用内部的方法,可以容易的得到实例的或者类的私有属性值;
然而,如果我想把 class Normal 的 setx方法名改成了其它(如 Normal_setx),外部很多地方用到了该函数,是不是我需要一个一个的去找该方法的调用地点,然后一个一个的改呢?
c语言或许会,但Python,一个高级语言,怎么会这么点事都解决不了呢?
那么,该如何解决以上问题呢?
其实有两种方法。
方法一:使用 属性函数property()
class Normal: def __init__(self): self.__x = None def getx(self): print('getx(): self.__x=', self.__x) return self.__x def setx(self, value): self.__x = value print('setx()') def delx(self): print('delx()') del self.__x y = property(getx, setx, delx, "I'm a property") tN=Normal() tN.y=10 tN.y del tN.y #输出结果: setx() getx(): self.__x= 10 delx()
直接把方法当属性来操作了,非常方便
方法二:使用 @property 装饰器
class Normal: def __init__(self): self.__x = None @property def xx(self): print('getx(): self.__x=', self.__x) return self.__x @xx.setter def xx(self, value): self.__x = value print('setx()') @xx.deleter def xx(self): print('delx()') del self.__x tN=Normal() tN.xx=10 tN.xx del tN.xx #输出结果信息: setx() getx(): self.__x= 10 delx()
跟方法一 输出同样的结果,证明,这两种方法都可行的(注意:第一个一定是 @property(替代getter哦,不然会报错))。
以上是Python之property()装饰器的使用详解的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

在CentOS系统上安装PyTorch,需要仔细选择合适的版本,并考虑以下几个关键因素:一、系统环境兼容性:操作系统:建议使用CentOS7或更高版本。CUDA与cuDNN:PyTorch版本与CUDA版本密切相关。例如,PyTorch1.9.0需要CUDA11.1,而PyTorch2.0.1则需要CUDA11.3。cuDNN版本也必须与CUDA版本匹配。选择PyTorch版本前,务必确认已安装兼容的CUDA和cuDNN版本。Python版本:PyTorch官方支

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。
