python difflib模块详解
这篇文章主要为大家详细介绍了python difflib模块的示例,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
difflib模块提供的类和方法用来进行序列的差异化比较,它能够比对文件并生成差异结果文本或者html格式的差异化比较页面,如果需要比较目录的不同,可以使用filecmp模块。
class difflib.SequenceMatcher
此类提供了比较任意可哈希类型序列对方法。此方法将寻找没有包含‘垃圾'元素的最大连续匹配序列。
通过对算法的复杂度比较,它由于原始的完形匹配算法,在最坏情况下有n的平方次运算,在最好情况下,具有线性的效率。
它具有自动垃圾启发式,可以将重复超过片段1%或者重复200次的字符作为垃圾来处理。可以通过将autojunk设置为false关闭该功能。
class difflib.Differ
此类比较的是文本行的差异并且产生适合人类阅读的差异结果或者增量结果,结果中各部分的表示如下:
class difflib.HtmlDiff
此类可以被用来创建HTML表格 (或者说包含表格的html文件) ,两边对应展示或者行对行的展示比对差异结果。
make_file(fromlines, tolines [, fromdesc][, todesc][, context][, numlines])
make_table(fromlines, tolines [, fromdesc][, todesc][, context][, numlines])
以上两个方法都可以用来生成包含一个内容为比对结果的表格的html文件,并且部分内容会高亮显示。
difflib.context_diff(a, b[, fromfile][, tofile][, fromfiledate][, tofiledate][, n][, lineterm])
比较a与b(字符串列表),并且返回一个差异文本行的生成器
示例:
>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n'] >>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n'] >>> for line in context_diff(s1, s2, fromfile='before.py', tofile='after.py'): ... sys.stdout.write(line) *** before.py --- after.py *************** *** 1,4 **** ! bacon ! eggs ! ham guido --- 1,4 ---- ! python ! eggy ! hamster guido
difflib.get_close_matches(word, possibilities[, n][, cutoff])
返回最大匹配结果的列表
示例:
>>> get_close_matches('appel', ['ape', 'apple', 'peach', 'puppy']) ['apple', 'ape'] >>> import keyword >>> get_close_matches('wheel', keyword.kwlist) ['while'] >>> get_close_matches('apple', keyword.kwlist) [] >>> get_close_matches('accept', keyword.kwlist) ['except']
difflib.ndiff(a, b[, linejunk][, charjunk])
比较a与b(字符串列表),返回一个Differ-style 的差异结果
示例:
>>> diff = ndiff('one\ntwo\nthree\n'.splitlines(1), ... 'ore\ntree\nemu\n'.splitlines(1)) >>> print ''.join(diff), - one ? ^ + ore ? ^ - two - three ? - + tree + emu
difflib.restore(sequence, which)
返回一个由两个比对序列产生的结果
示例
>>> diff = ndiff('one\ntwo\nthree\n'.splitlines(1), ... 'ore\ntree\nemu\n'.splitlines(1)) >>> diff = list(diff) # materialize the generated delta into a list >>> print ''.join(restore(diff, 1)), one two three >>> print ''.join(restore(diff, 2)), ore tree emu
difflib.unified_diff(a, b[, fromfile][, tofile][, fromfiledate][, tofiledate][, n][, lineterm])
比较a与b(字符串列表),返回一个unified diff格式的差异结果.
示例:
>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n'] >>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n'] >>> for line in unified_diff(s1, s2, fromfile='before.py', tofile='after.py'): ... sys.stdout.write(line) --- before.py +++ after.py @@ -1,4 +1,4 @@ -bacon -eggs -ham +python +eggy +hamster guido
实际应用示例
比对两个文件,然后生成一个展示差异结果的HTML文件
#coding:utf-8 ''' file:difflibeg.py date:2017/9/9 10:33 author:lockey email:lockey@123.com desc:diffle module learning and practising ''' import difflib hd = difflib.HtmlDiff() loads = '' with open('G:/python/note/day09/0907code/hostinfo/cpu.py','r') as load: loads = load.readlines() load.close() mems = '' with open('G:/python/note/day09/0907code/hostinfo/mem.py', 'r') as mem: mems = mem.readlines() mem.close() with open('htmlout.html','a+') as fo: fo.write(hd.make_file(loads,mems)) fo.close()
运行结果:
生成的html文件比对结果:
以上是python difflib模块详解的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

在 Sublime Text 中运行 Python 代码,需先安装 Python 插件,再创建 .py 文件并编写代码,最后按 Ctrl B 运行代码,输出会在控制台中显示。

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

在 Visual Studio Code(VSCode)中编写代码简单易行,只需安装 VSCode、创建项目、选择语言、创建文件、编写代码、保存并运行即可。VSCode 的优点包括跨平台、免费开源、强大功能、扩展丰富,以及轻量快速。

在 Notepad 中运行 Python 代码需要安装 Python 可执行文件和 NppExec 插件。安装 Python 并为其添加 PATH 后,在 NppExec 插件中配置命令为“python”、参数为“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通过快捷键“F6”运行 Python 代码。
