首页 后端开发 php教程 PHP遍历算法的总结

PHP遍历算法的总结

Dec 20, 2017 pm 04:29 PM
php 总结 算法

本文实例讲述了PHP实现图的邻接矩阵表示及几种简单遍历算法。分享给大家供大家参考,具体如下:

这次给大家准备了一些PHP实现图的邻接矩阵表示及几种简单遍历算法。帮助大家在PHP的路上越走越远,一起来看一下。

在web开发中图这种数据结构的应用比树要少很多,但在一些业务中也常有出现,下面介绍几种图的寻径算法,并用PHP加以实现.

佛洛依德算法,主要是在顶点集内,按点与点相邻边的权重做遍历,如果两点不相连则权重无穷大,这样通过多次遍历可以得到点到点的最短路径,逻辑上最好理解,实现也较为简单,时间复杂度为O(n^3);

迪杰斯特拉算法,OSPF中实现最短路由所用到的经典算法,djisktra算法的本质是贪心算法,不断的遍历扩充顶点路径集合S,一旦发现更短的点到点路径就替换S中原有的最短路径,完成所有遍历后S便是所有顶点的最短路径集合了.迪杰斯特拉算法的时间复杂度为O(n^2);

克鲁斯卡尔算法,在图内构造最小生成树,达到图中所有顶点联通.从而得到最短路径.时间复杂度为O(N*logN);

<?php
/**
 * PHP 实现图邻接矩阵
 */
class MGraph{
  private $vexs; //顶点数组
  private $arc; //边邻接矩阵,即二维数组
  private $arcData; //边的数组信息
  private $direct; //图的类型(无向或有向)
  private $hasList; //尝试遍历时存储遍历过的结点
  private $queue; //广度优先遍历时存储孩子结点的队列,用数组模仿
  private $infinity = 65535;//代表无穷,即两点无连接,建带权值的图时用,本示例不带权值
  private $primVexs; //prim算法时保存顶点
  private $primArc; //prim算法时保存边
  private $krus;//kruscal算法时保存边的信息
  public function MGraph($vexs, $arc, $direct = 0){
    $this->vexs = $vexs;
    $this->arcData = $arc;
    $this->direct = $direct;
    $this->initalizeArc();
    $this->createArc();
  }
  private function initalizeArc(){
    foreach($this->vexs as $value){
      foreach($this->vexs as $cValue){
        $this->arc[$value][$cValue] = ($value == $cValue ? 0 : $this->infinity);
      }
    }
  }
  //创建图 $direct:0表示无向图,1表示有向图
  private function createArc(){
    foreach($this->arcData as $key=>$value){
      $strArr = str_split($key);
      $first = $strArr[0];
      $last = $strArr[1];
      $this->arc[$first][$last] = $value;
      if(!$this->direct){
        $this->arc[$last][$first] = $value;
      }
    }
  }
  //floyd算法
  public function floyd(){
    $path = array();//路径数组
    $distance = array();//距离数组
    foreach($this->arc as $key=>$value){
      foreach($value as $k=>$v){
        $path[$key][$k] = $k;
        $distance[$key][$k] = $v;
      }
    }
    for($j = 0; $j < count($this->vexs); $j ++){
      for($i = 0; $i < count($this->vexs); $i ++){
        for($k = 0; $k < count($this->vexs); $k ++){
          if($distance[$this->vexs[$i]][$this->vexs[$k]] > $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]]){
            $path[$this->vexs[$i]][$this->vexs[$k]] = $path[$this->vexs[$i]][$this->vexs[$j]];
            $distance[$this->vexs[$i]][$this->vexs[$k]] = $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]];
          }
        }
      }
    }
    return array($path, $distance);
  }
  //djikstra算法
  public function dijkstra(){
    $final = array();
    $pre = array();//要查找的结点的前一个结点数组
    $weight = array();//权值和数组
    foreach($this->arc[$this->vexs[0]] as $k=>$v){
      $final[$k] = 0;
      $pre[$k] = $this->vexs[0];
      $weight[$k] = $v;
    }
    $final[$this->vexs[0]] = 1;
    for($i = 0; $i < count($this->vexs); $i ++){
      $key = 0;
      $min = $this->infinity;
      for($j = 1; $j < count($this->vexs); $j ++){
        $temp = $this->vexs[$j];
        if($final[$temp] != 1 && $weight[$temp] < $min){
          $key = $temp;
          $min = $weight[$temp];
        }
      }
      $final[$key] = 1;
      for($j = 0; $j < count($this->vexs); $j ++){
        $temp = $this->vexs[$j];
        if($final[$temp] != 1 && ($min + $this->arc[$key][$temp]) < $weight[$temp]){
          $pre[$temp] = $key;
          $weight[$temp] = $min + $this->arc[$key][$temp];
        }
      }
    }
    return $pre;
  }
  //kruscal算法
  private function kruscal(){
    $this->krus = array();
    foreach($this->vexs as $value){
      $krus[$value] = 0;
    }
    foreach($this->arc as $key=>$value){
      $begin = $this->findRoot($key);
      foreach($value as $k=>$v){
        $end = $this->findRoot($k);
        if($begin != $end){
          $this->krus[$begin] = $end;
        }
      }
    }
  }
  //查找子树的尾结点
  private function findRoot($node){
    while($this->krus[$node] > 0){
      $node = $this->krus[$node];
    }
    return $node;
  }
  //prim算法,生成最小生成树
  public function prim(){
    $this->primVexs = array();
    $this->primArc = array($this->vexs[0]=>0);
    for($i = 1; $i < count($this->vexs); $i ++){
      $this->primArc[$this->vexs[$i]] = $this->arc[$this->vexs[0]][$this->vexs[$i]];
      $this->primVexs[$this->vexs[$i]] = $this->vexs[0];
    }
    for($i = 0; $i < count($this->vexs); $i ++){
      $min = $this->infinity;
      $key;
      foreach($this->vexs as $k=>$v){
        if($this->primArc[$v] != 0 && $this->primArc[$v] < $min){
          $key = $v;
          $min = $this->primArc[$v];
        }
      }
      $this->primArc[$key] = 0;
      foreach($this->arc[$key] as $k=>$v){
        if($this->primArc[$k] != 0 && $v < $this->primArc[$k]){
          $this->primArc[$k] = $v;
          $this->primVexs[$k] = $key;
        }
      }
    }
    return $this->primVexs;
  }
  //一般算法,生成最小生成树
  public function bst(){
    $this->primVexs = array($this->vexs[0]);
    $this->primArc = array();
    next($this->arc[key($this->arc)]);
    $key = NULL;
    $current = NULL;
    while(count($this->primVexs) < count($this->vexs)){
      foreach($this->primVexs as $value){
        foreach($this->arc[$value] as $k=>$v){
          if(!in_array($k, $this->primVexs) && $v != 0 && $v != $this->infinity){
            if($key == NULL || $v < current($current)){
              $key = $k;
              $current = array($value . $k=>$v);
            }
          }
        }
      }
      $this->primVexs[] = $key;
      $this->primArc[key($current)] = current($current);
      $key = NULL;
      $current = NULL;
    }
    return array(&#39;vexs&#39;=>$this->primVexs, &#39;arc&#39;=>$this->primArc);
  }
  //一般遍历
  public function reserve(){
    $this->hasList = array();
    foreach($this->arc as $key=>$value){
      if(!in_array($key, $this->hasList)){
        $this->hasList[] = $key;
      }
      foreach($value as $k=>$v){
        if($v == 1 && !in_array($k, $this->hasList)){
          $this->hasList[] = $k;
        }
      }
    }
    foreach($this->vexs as $v){
      if(!in_array($v, $this->hasList))
        $this->hasList[] = $v;
    }
    return implode($this->hasList);
  }
  //广度优先遍历
  public function bfs(){
    $this->hasList = array();
    $this->queue = array();
    foreach($this->arc as $key=>$value){
      if(!in_array($key, $this->hasList)){
        $this->hasList[] = $key;
        $this->queue[] = $value;
        while(!empty($this->queue)){
          $child = array_shift($this->queue);
          foreach($child as $k=>$v){
            if($v == 1 && !in_array($k, $this->hasList)){
              $this->hasList[] = $k;
              $this->queue[] = $this->arc[$k];
            }
          }
        }
      }
    }
    return implode($this->hasList);
  }
  //执行深度优先遍历
  public function excuteDfs($key){
    $this->hasList[] = $key;
    foreach($this->arc[$key] as $k=>$v){
      if($v == 1 && !in_array($k, $this->hasList))
        $this->excuteDfs($k);
    }
  }
  //深度优先遍历
  public function dfs(){
    $this->hasList = array();
    foreach($this->vexs as $key){
      if(!in_array($key, $this->hasList))
        $this->excuteDfs($key);
    }
    return implode($this->hasList);
  }
  //返回图的二维数组表示
  public function getArc(){
    return $this->arc;
  }
  //返回结点个数
  public function getVexCount(){
    return count($this->vexs);
  }
}
$a = array(&#39;a&#39;, &#39;b&#39;, &#39;c&#39;, &#39;d&#39;, &#39;e&#39;, &#39;f&#39;, &#39;g&#39;, &#39;h&#39;, &#39;i&#39;);
$b = array(&#39;ab&#39;=>&#39;10&#39;, &#39;af&#39;=>&#39;11&#39;, &#39;bg&#39;=>&#39;16&#39;, &#39;fg&#39;=>&#39;17&#39;, &#39;bc&#39;=>&#39;18&#39;, &#39;bi&#39;=>&#39;12&#39;, &#39;ci&#39;=>&#39;8&#39;, &#39;cd&#39;=>&#39;22&#39;, &#39;di&#39;=>&#39;21&#39;, &#39;dg&#39;=>&#39;24&#39;, &#39;gh&#39;=>&#39;19&#39;, &#39;dh&#39;=>&#39;16&#39;, &#39;de&#39;=>&#39;20&#39;, &#39;eh&#39;=>&#39;7&#39;,&#39;fe&#39;=>&#39;26&#39;);//键为边,值权值
$test = new MGraph($a, $b);
print_r($test->bst());
登录后复制

行结果:

Array
(
  [vexs] => Array
    (
      [0] => a
      [1] => b
      [2] => f
      [3] => i
      [4] => c
      [5] => g
      [6] => h
      [7] => e
      [8] => d
    )
  [arc] => Array
    (
      [ab] => 10
      [af] => 11
      [bi] => 12
      [ic] => 8
      [bg] => 16
      [gh] => 19
      [he] => 7
      [hd] => 16
    )
)
登录后复制

相信看了这些案例你已经掌握了方法,更多精彩请关注php中文网其它相关文章!

相关阅读:

二叉树遍历算法-php的示例

php实现的二叉树遍历算法示例代码详解

二叉树的非递归后序遍历算法实例详解_javascript技巧

以上是PHP遍历算法的总结的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

适用于 Ubuntu 和 Debian 的 PHP 8.4 安装和升级指南 适用于 Ubuntu 和 Debian 的 PHP 8.4 安装和升级指南 Dec 24, 2024 pm 04:42 PM

PHP 8.4 带来了多项新功能、安全性改进和性能改进,同时弃用和删除了大量功能。 本指南介绍了如何在 Ubuntu、Debian 或其衍生版本上安装 PHP 8.4 或升级到 PHP 8.4

CakePHP 使用数据库 CakePHP 使用数据库 Sep 10, 2024 pm 05:25 PM

在 CakePHP 中使用数据库非常容易。本章我们将了解CRUD(创建、读取、更新、删除)操作。

CakePHP 日期和时间 CakePHP 日期和时间 Sep 10, 2024 pm 05:27 PM

为了在 cakephp4 中处理日期和时间,我们将使用可用的 FrozenTime 类。

CakePHP 文件上传 CakePHP 文件上传 Sep 10, 2024 pm 05:27 PM

为了进行文件上传,我们将使用表单助手。这是文件上传的示例。

讨论 CakePHP 讨论 CakePHP Sep 10, 2024 pm 05:28 PM

CakePHP 是 PHP 的开源框架。它的目的是使应用程序的开发、部署和维护变得更加容易。 CakePHP 基于类似 MVC 的架构,功能强大且易于掌握。模型、视图和控制器 gu

CakePHP 创建验证器 CakePHP 创建验证器 Sep 10, 2024 pm 05:26 PM

可以通过在控制器中添加以下两行来创建验证器。

如何设置 Visual Studio Code (VS Code) 进行 PHP 开发 如何设置 Visual Studio Code (VS Code) 进行 PHP 开发 Dec 20, 2024 am 11:31 AM

Visual Studio Code,也称为 VS Code,是一个免费的源代码编辑器 - 或集成开发环境 (IDE) - 可用于所有主要操作系统。 VS Code 拥有针对多种编程语言的大量扩展,可以轻松编写

CakePHP 日志记录 CakePHP 日志记录 Sep 10, 2024 pm 05:26 PM

登录 CakePHP 是一项非常简单的任务。您只需使用一项功能即可。您可以记录任何后台进程(如 cronjob)的错误、异常、用户活动、用户采取的操作。在 CakePHP 中记录数据很容易。提供了 log() 函数

See all articles