用canvas绘制一个曲线动画实例
在前端开发中,贝赛尔曲线无处不在,本文主要和大家分享用canvas绘制一个曲线动画实例,希望能帮助到大家。
它可以用来绘制曲线,在svg和canvas中,原生提供的曲线绘制都是使用贝赛尔曲线
它也可以用来描述一个缓动算法,设置css的
transition-timing-function
属性,可以使用贝塞尔曲线来描述过渡的缓动计算几乎所有前端2D或3D图形图表库(echarts,d3,three.js)都会使用到贝塞尔曲线
这篇文章我准备从实现一个非常简单的曲线动画效果入手,帮助大家彻底地弄懂什么是贝塞尔曲线,以及它有哪些特性,文章中有一点点数学公式,但是都非常简单:)。
实现这样一个曲线动画
可以点击这里查看在线演示
在写代码之前,先了解一下什么是贝塞尔曲线吧。
贝塞尔曲线
贝塞尔曲线(Bezier curve)是计算机图形学中相当重要的参数曲线,它通过一个方程来描述一条曲线,根据方程的最高阶数,又分为线性贝赛尔曲线,二次贝塞尔曲线、三次贝塞尔曲线和更高阶的贝塞尔曲线。
下面详细介绍一下用得比较多的二次贝塞尔曲线和三次贝塞尔曲线
二次贝塞尔曲线
二次贝塞尔曲线由三个点P0
,P1
,P2
来确定,这些点也被称作控制点。曲线的方程为:
这个方程其实有它的几何意义,它表示可以通过这样的步骤来绘制一条曲线:
选定一个
0-1
的t
值通过
P0
和P1
计算出点Q0
,Q0
在P0
P1
连成的直线上,并且length( P0, Q0 ) = length( P0, P1 ) * t
同样,通过
P1
和P2
计算出Q1
,使得length( P1, Q1 ) = length( P1, P2 ) * t
再重复一次这个步骤,通过
Q1
和Q2
计算出B
,使得length( Q0, Q1 ) = length( Q0, B ) * t
。B
就为当前曲线上的点
注:上面的length
表示两点之间的长度
图:二次贝塞尔曲线结构
有了曲线方程,我们直接代入具体的t
值就能算出点B
了。
如果将t
的值从0
过渡到1
,不断计算点B
,就可以得到一条二次贝塞尔曲线:
图:二次贝塞尔线绘制过程
在canvas中,绘制二次贝塞尔曲线的方法为
ctx.quadraticCurveTo( p1x, p1y, p2x, p2y )
其中p1x, p1y, p2x, p2y
为后两个控制点(P1
和P2
)的横纵坐标,它默认将当前路径的起点作为一个控制点(P0
)。
三次贝塞尔曲线
三次贝塞尔曲线需要四个点P0
,P1
,P2
,P3
来确定,曲线方程为
它的计算过程和二次贝塞尔曲线类似,这里不再赘述,可以看下图:
图:三次贝塞尔曲线结构
同样,将t
的值从0
过渡到1
,就可以绘制出一条三次贝塞尔曲线:
图:三次贝塞尔曲线绘制过程
在canvas中,绘制三次贝塞尔曲线的方法为
ctx.bezierCurveTo( p1x, p1y, p2x, p2y, p3x, p3y )
其中p1x, p1y, p2x, p2y, p3x, p3y
为后三个控制点(P1
,P2
和P3
)的横纵坐标,它默认将当前路径的起点作为一个控制点(P0
)。
贝塞尔曲线的特征
在三次贝塞尔曲线后面,还有更高阶的贝塞尔曲线,同样它们绘制的过程也更加复杂
四次贝塞尔曲线
图:四次贝塞尔曲线
五次贝塞尔曲线
图:五次贝塞尔曲线
我们可以归纳出贝塞尔曲线有几个重要的特征:
n阶贝塞尔曲线需要n+1个点来确定
贝塞尔曲线是平滑的
贝塞尔曲线的起点和终点与对应控制点的连线相切
绘制贝塞尔曲线
复习完基础概念,接下来就要讲如果绘制贝塞尔曲线啦
为简单起见,我们选择使用二次贝塞尔曲线。
我们先不考虑动画的事,我们先将问题简化成:给定一个起点和一个终点,需要实现一个函数,它能够绘制出一条曲线。
也就是说我们需要实现一个函数drawCurvePath
,除渲染上下文ctx外(不清楚ctx是什么的同学可以先熟悉下canvas的基本概念),它接受三个参数,分别为二次贝塞尔曲线的三个控制点。我们将样式控制移到函数外,drawCurvePath
只用来绘制路径。
/** * 绘制二次贝赛尔曲线路径 * @param {Object} ctx * @param {Array<number>} p0 * @param {Array<number>} p1 * @param {Array<number>} p2 */ function drawCurvePath( ctx, p0, p1, p2 ) { // ... }
前文提到过,在canvas中,绘制二次贝赛尔曲线的方法是quadraticCurveTo
,所以只要短短两行就能完成这个方法。
/** * 绘制二次贝赛尔曲线路径 * @param {CanvasRenderingContext2D} ctx * @param {Array<number>} p0 * @param {Array<number>} p1 * @param {Array<number>} p2 */ function drawCurvePath( ctx, p0, p1, p2 ) { ctx.moveTo( p0[ 0 ], p0[ 1 ] ); ctx.quadraticCurveTo( p1[ 0 ], p1[ 1 ], p2[ 0 ], p2[ 1 ] ); }
这样就完成了基本的绘制二次贝塞尔曲线的方法了。
但是函数这样设计有点小问题
如果我们是在做一个图形库,我们想给使用者提供一个绘制曲线的方法。
对于使用者来说,他只想在给定的起点和终点间间绘制一条曲线,他想要得到的曲线尽量美观,但是又不想关心具体的实现细节,如果还需要给第三个点,使用者会有一定的学习成本(至少需要弄明白什么是贝塞尔曲线)。
看到这里你可能会比较疑惑,即使是二次贝塞尔曲线也需要三个控制点,只有起点和终点怎么绘制曲线呢。
我们可以在起点和终点的垂直平分线上选一点作为第三个控制点,可以提供给使用者一个参数来控制曲线的弯曲程度,现在函数就变成了这样
/** * 绘制一条曲线路径 * @param {CanvasRenderingContext2D} ctx * @param {Array<number>} start 起点 * @param {Array<number>} end 终点 * @param {number} curveness 曲度(0-1) */ function drawCurvePath( ctx, start, end, curveness ) { // ... }
我们用curveness
来表示曲线的弯曲程度,也就是第三个控制点的偏离程度。这样很容易就能计算出中间点。
现在完整的函数变成了这样:
/** * 绘制一条曲线路径 * @param {Object} ctx canvas渲染上下文 * @param {Array<number>} start 起点 * @param {Array<number>} end 终点 * @param {number} curveness 曲度(0-1) */ function drawCurvePath( ctx, start, end, curveness ) { // 计算中间控制点 var cp = [ ( start[ 0 ] + end[ 0 ] ) / 2 - ( start[ 1 ] - end[ 1 ] ) * curveness, ( start[ 1 ] + end[ 1 ] ) / 2 - ( end[ 0 ] - start[ 0 ] ) * curveness ]; ctx.moveTo( start[ 0 ], start[ 1 ] ); ctx.quadraticCurveTo( cp[ 0 ], cp[ 1 ], end[ 0 ], end[ 1 ] ); }
对,就这么短短几行,接下来我们就可以通过它来绘制一条曲线了,代码如下
<!DOCTYPE html> <html lang="en"> <head> <title>draw curve</title> </head> <body> <canvas id="canvas" width="800" height="800"></canvas> <script> var canvas = document.getElementById( 'canvas' ); var ctx = canvas.getContext( '2d' ); ctx.lineWidth = 2; ctx.strokeStyle = '#000'; ctx.beginPath(); drawCurvePath( ctx, [ 100, 100 ], [ 200, 300 ], 0.4 ); ctx.stroke(); function drawCurvePath( ctx, start, end, curveness ) { // ... } </script> </body> </html>
绘制结果:
绘制一条曲线
绘制贝塞尔曲线动画
终于来到文章的本体啦,我们的目的不是绘制一条静态的曲线,我们想绘制一条有过渡效果的曲线。
简化一下问题,那就是我们希望绘制曲线的函数还接受另一个参数,表示绘制曲线的百分比。我们定时去调用这个函数,递增百分比这个参数,就能画出动画了。
我们新增一个参数percent
来表示百分比,现在函数变成了这样:
/** * 绘制一条曲线路径 * @param {Object} ctx canvas渲染上下文 * @param {Array<number>} start 起点 * @param {Array<number>} end 终点 * @param {number} curveness 曲度(0-1) * @param {number} percent 绘制百分比(0-100) */ function drawCurvePath( ctx, start, end, curveness, percent ) { // ... }
但是canvas提供的quadraticCurveTo
方法只能绘制一条完整的二次贝赛尔曲线,没有办法去控制它只画一部分。
画完后用clearRect
擦除掉一部分?这不太可行,因为很难确定要擦除的范围。如果曲线的线宽比较宽,就还需要保证擦除的边界和曲线末端垂直,问题就变得很复杂了。
现在再重新看看这张图
我们是不是可以将percent
这个参数理解成t
值,然后通过贝赛尔曲线方程去计算出中间所有的点,用直线连接起来,以此模拟绘制贝赛尔曲线的一部分呢?
方法一
我们不再用canvas提供的quadraticCurveTo
来绘制曲线,而是通过贝赛尔曲线的方程计算出一系列点,用多端直线来模拟曲线。
这样做的好处时,我们可以很容易的控制绘制的范围。
那么函数实现就变成了这样:
/** * 绘制一条曲线路径 * @param {Object} ctx canvas渲染上下文 * @param {Array<number>} start 起点 * @param {Array<number>} end 终点 * @param {number} curveness 曲度(0-1) * @param {number} percent 绘制百分比(0-100) */ function drawCurvePath( ctx, start, end, curveness, percent ) { var cp = [ ( start[ 0 ] + end[ 0 ] ) / 2 - ( start[ 1 ] - end[ 1 ] ) * curveness, ( start[ 1 ] + end[ 1 ] ) / 2 - ( end[ 0 ] - start[ 0 ] ) * curveness ]; ctx.moveTo( start[ 0 ], start[ 1 ] ); for ( var t = 0; t <= percent / 100; t += 0.01 ) { var x = quadraticBezier( start[ 0 ], cp[ 0 ], end[ 0 ], t ); var y = quadraticBezier( start[ 1 ], cp[ 1 ], end[ 1 ], t ); ctx.lineTo( x, y ); } } function quadraticBezier( p0, p1, p2, t ) { var k = 1 - t; return k * k * p0 + 2 * ( 1 - t ) * t * p1 + t * t * p2; // 这个方程就是二次贝赛尔曲线方程 }
接下来就可以通过设置定时器,每隔一段时间调用一次这个方法,并且递增percent
为了动画更加平滑,我们使用requestAnimationFrame
来代替定时器
<!DOCTYPE html> <html lang="en"> <head> <title>draw curve</title> </head> <body> <canvas id="canvas" width="800" height="800"></canvas> <script> var canvas = document.getElementById( 'canvas' ); var ctx = canvas.getContext( '2d' ); ctx.lineWidth = 2; ctx.strokeStyle = '#000'; var percent = 0; function animate() { ctx.clearRect( 0, 0, 800, 800 ); ctx.beginPath(); drawCurvePath( ctx, [ 100, 100 ], [ 200, 300 ], 0.2, percent ); ctx.stroke(); percent = ( percent + 1 ) % 100; requestAnimationFrame( animate ); } animate(); function drawCurvePath( ctx, start, end, curveness, percent ) { // ... } </script> </body> </html>
得到的结果:
这样基本实现了我们的需求,但它有一个问题:
测试发现,进行一次lineTo
的时间和一次quadraticCurveTo
的时间差不多,但是quadraticCurveTo
只需要一次就能画出曲线,而使用lineTo
则需要数十次。
换言之,用这样的方式绘制曲线,和我们前面的实现方式相比性能下降了数十倍之多。在绘制一条曲线时可能感觉不到区别,但是如果需要同时绘制上千条曲线,性能就会受到很大的影响。
方法二
那有没有什么方法可以做到用quadraticCurveTo
来实现绘制完整曲线的一部分呢?
我们再次回到这张图
在中间的某一时刻,例如t=0.25时,它是这样的:
我们注意到,曲线P0-B
这一段似乎也是贝赛尔曲线,它的控制点变成了P0,Q0,B
。
现在问题就迎刃而解了,我们只需要每次计算出Q0,B
,就能得到其中一小段贝赛尔曲线的控制点,然后就可以通过quadraticCurveTo
来绘制它了。
代码如下:
/** * 绘制一条曲线路径 * @param {Object} ctx canvas渲染上下文 * @param {Array<number>} start 起点 * @param {Array<number>} end 终点 * @param {number} curveness 曲度(0-1) * @param {number} percent 绘制百分比(0-100) */ function drawCurvePath( ctx, start, end, curveness, percent ) { var cp = [ ( start[ 0 ] + end[ 0 ] ) / 2 - ( start[ 1 ] - end[ 1 ] ) * curveness, ( start[ 1 ] + end[ 1 ] ) / 2 - ( end[ 0 ] - start[ 0 ] ) * curveness ]; var t = percent / 100; var p0 = start; var p1 = cp; var p2 = end; var v01 = [ p1[ 0 ] - p0[ 0 ], p1[ 1 ] - p0[ 1 ] ]; // 向量<p0, p1> var v12 = [ p2[ 0 ] - p1[ 0 ], p2[ 1 ] - p1[ 1 ] ]; // 向量<p1, p2> var q0 = [ p0[ 0 ] + v01[ 0 ] * t, p0[ 1 ] + v01[ 1 ] * t ]; var q1 = [ p1[ 0 ] + v12[ 0 ] * t, p1[ 1 ] + v12[ 1 ] * t ]; var v = [ q1[ 0 ] - q0[ 0 ], q1[ 1 ] - q0[ 1 ] ]; // 向量<q0, q1> var b = [ q0[ 0 ] + v[ 0 ] * t, q0[ 1 ] + v[ 1 ] * t ]; ctx.moveTo( p0[ 0 ], p0[ 1 ] ); ctx.quadraticCurveTo( q0[ 0 ], q0[ 1 ], b[ 0 ], b[ 1 ] ); }
将前面写的页面替换成上面的代码,可以看到得到的结果是一样的:
绘制动画
现在已经解决了最关键的问题,我们可以绘制动画啦。
不过这一部分并不重要,我就不贴代码了。
完整代码可以看这里
相关推荐:
以上是用canvas绘制一个曲线动画实例的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

CSS动画:如何实现元素的闪光效果,需要具体代码示例在网页设计中,动画效果有时可以为页面带来很好的用户体验。而闪光效果是一种常见的动画效果,它可以使元素更加引人注目。下面将介绍如何使用CSS实现元素的闪光效果。一、闪光的基本实现首先,我们需要使用CSS的animation属性来实现闪光效果。animation属性的值需要指定动画名称、动画执行时间、动画延迟时
![动画不工作在PowerPoint中[修复]](https://img.php.cn/upload/article/000/887/227/170831232982910.jpg?x-oss-process=image/resize,m_fill,h_207,w_330)
您是否正在尝试制作演示文稿,但无法添加动画?如果动画在你的WindowsPC上的PowerPoint中不起作用,那么这篇文章将会帮助你。这是一个常见的问题,许多人都在抱怨。例如,在Microsoft团队中演示或在屏幕录制期间,动画可能会停止工作。在本指南中,我们将探索各种故障排除技术,以帮助您修复在Windows上的PowerPoint中无法运行的动画。为什么我的PowerPoint动画不起作用?我们注意到可能导致Windows上PowerPoint中的动画无法工作问题的一些可能原因如下:由于个

我们在日常的办公中经常会使用到ppt,那么你是否对ppt里边的每个操作功能都很了解呢?例如:ppt中怎么设置动画效果、怎么设置切换效果、每个动画的效果时长是多少?每个幻灯片能不能自动播放、ppt动画先进入再退出等等,那么今天这期我就先跟大家分享ppt动画先进入再退出的具体操作步骤,就在下方,小伙伴们快来看一看吧!1.首先,我们在电脑中打开ppt,单击文本框外侧选中文本框,(如下图红色圈出部分所示)。2.然后,单击菜单栏中的【动画】,选中【擦除】的效果,(如图红色圈出部分所示)。3.接下来,单击【

本站1月26日消息,国产3D动画电影《二郎神之深海蛟龙》发布一组最新剧照,正式宣布将于7月13日上映。据了解,《二郎神之深海蛟龙》是由迷狐星(北京)动漫有限公司、霍尔果斯众合千澄影业有限公司、浙江横店影业有限公司、浙江共赢影业有限公司、成都天火科技有限公司、华文映像(北京)影业有限公司出品,王君执导的动画电影,原定2022年7月22日在中国大陆上映。本站剧情简介:封神之战后,姜子牙携“封神榜”分封诸神,而后封神榜被天庭密封于九州秘境深海之下。事实上,除了分封神位,封神榜中还封缄着众多强大的妖邪元

本站消息,宫崎骏动画电影《红猪》宣布将上映时间延长至2024年1月16日本站此前报道,《红猪》已于11月17日登陆全国艺联专线影院,累计票房超2000万,豆瓣评分8.6分,4、5星好评占85.8%。《红猪》由吉卜力工作室制作,宫崎骏执导,森山周一郎、加藤登纪子、大冢明夫、冈村明美等参与配音,最初于1992年在日本上映。该片改编自宫崎骏漫画作品《飞行艇时代》,讲述了意大利空军的王牌飞行员波鲁克・罗森被施了魔法变成了一头猪。之后,他成为了一位赏金猎人,打击空中劫匪,保护身边人。剧情简介:罗森是一战中

Netflix的黏土动画电影《小鸡快跑2》的最终预告已经公布,该影片预计将于12月15日上线本站注意到,《小鸡快跑2》预告片展示了小鸡洛基和金杰为了寻找女儿莫莉开展行动。莫莉被FunLand农场的一辆卡车带走,洛基和金杰冒着危险找回女儿。该片由萨姆・菲尔执导,并由桑迪韦・牛顿、扎克瑞・莱维、贝拉・拉姆齐、伊梅尔达・斯汤顿和大卫・布拉德利主演。据了解,《小鸡快跑2》是继《小鸡快跑》之后时隔20多年推出的续集。第一部作品于2001年1月2日在中国上映,讲述了一群小鸡们在养鸡厂面临被做成鸡肉馅饼的命运

Netflix抱歉,我可以帮您重写内容,但我需要知道您想要重写的原始内容。可以提供给我吗?在极客周上公布了动画剧集《索尼克:回家大冒险》第三季片段,预计将于2024年上线抱歉,我可以帮您重写内容,但我需要知道您想要重写的原始内容。可以提供给我吗?据本站了解,《索尼克:回家大冒险》由世嘉、WildBrain抱歉,我可以帮您重写内容,但我需要知道您想要重写的原始内容。可以提供给我吗?工作室抱歉,我可以帮您重写内容,但我需要知道您想要重写的原始内容。可以提供给我吗?和抱歉,我可以帮您重写内容,但我需要

如果您渴望找到顶尖的免费AI动画艺术生成器,您可以结束搜索了。动漫艺术世界几十年来一直以其独特的角色设计、迷人的色彩和引人入胜的情节吸引着观众。不过,创作动漫艺术需要天赋、技能和耗费大量时间。然而,随着人工智能(AI)的不断发展,现在你可以借助最佳的免费AI动画艺术生成器,无需深入了解复杂技术,就能探索动漫艺术的世界。这将为你释放创造力提供新的可能性。什么是人工智能动漫艺术生成器?AI动画艺术生成器利用复杂的算法和机器学习技术,分析广泛的动画作品数据库。通过这些算法,系统学习并识别不同动漫风格的
