python爬取安居客二手房网站数据方法分享
本文主要为大家带来一篇python爬取安居客二手房网站数据(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧,希望能帮助到大家。
现在开始正式进行爬虫书写首先,需要分析一下要爬取的网站的结构:作为一名河南的学生,那就看看郑州的二手房信息吧!
在上面这个页面中,我们可以看到一条条的房源信息,由上可以看到网页一条条的房源信息,点击进去后就会发现:
房源的详细信息。OK!那么我们要干嘛呢,就是把郑州这个地区的二手房房源信息都能拿到手,可以保存到数据库中,用来干嘛呢,作为一个地理人,还是有点用处的,这次就不说了好,正式开始,首先我采用python3.6 中的requests,BeautifulSoup模块来进行爬取页面,首先由requests模块进行请求:
# 网页的请求头 header = { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36' } # url链接 url = 'https://zhengzhou.anjuke.com/sale/' response = requests.get(url, headers=header) print(response.text)
执行后就会得到这个网站的html代码了
通过分析可以得到每个房源都在class="list-item"的 li 标签中,那么我们就可以根据BeautifulSoup包进行提取
# 通过BeautifulSoup进行解析出每个房源详细列表并进行打印 soup = BeautifulSoup(response.text, 'html.parser') result_li = soup.find_all('li', {'class': 'list-item'}) for i in result_li: print(i)
通过打印就能进一步减少了code量,好,继续提取
# 通过BeautifulSoup进行解析出每个房源详细列表并进行打印 soup = BeautifulSoup(response.text, 'html.parser') result_li = soup.find_all('li', {'class': 'list-item'}) # 进行循环遍历其中的房源详细列表 for i in result_li: # 由于BeautifulSoup传入的必须为字符串,所以进行转换 page_url = str(i) soup = BeautifulSoup(page_url, 'html.parser') # 由于通过class解析的为一个列表,所以只需要第一个参数 result_href = soup.find_all('a', {'class': 'houseListTitle'})[0] print(result_href.attrs['href'])
这样,我们就能看到一个个的url了,是不是很喜欢
好了,按正常的逻辑就要进入页面开始分析详细页面了,但是爬取完后如何进行下一页的爬取呢所以,我们就需要先分析该页面是否有下一页
同样的方法就可以发现下一页同样是如此的简单,那么咱们就可以还是按原来的配方原来的味道继续
# 进行下一页的爬取 result_next_page = soup.find_all('a', {'class': 'aNxt'}) if len(result_next_page) != 0: print(result_next_page[0].attrs['href']) else: print('没有下一页了')
因为当存在下一页的时候,网页中就是一个a标签,如果没有的话,就会成为i标签了,所以这样的就行,因此,我们就能完善一下,将以上这些封装为一个函数
import requests from bs4 import BeautifulSoup # 网页的请求头 header = { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36' } def get_page(url): response = requests.get(url, headers=header) # 通过BeautifulSoup进行解析出每个房源详细列表并进行打印 soup = BeautifulSoup(response.text, 'html.parser') result_li = soup.find_all('li', {'class': 'list-item'}) # 进行下一页的爬取 result_next_page = soup.find_all('a', {'class': 'aNxt'}) if len(result_next_page) != 0: # 函数进行递归 get_page(result_next_page[0].attrs['href']) else: print('没有下一页了') # 进行循环遍历其中的房源详细列表 for i in result_li: # 由于BeautifulSoup传入的必须为字符串,所以进行转换 page_url = str(i) soup = BeautifulSoup(page_url, 'html.parser') # 由于通过class解析的为一个列表,所以只需要第一个参数 result_href = soup.find_all('a', {'class': 'houseListTitle'})[0] # 先不做分析,等一会进行详细页面函数完成后进行调用 print(result_href.attrs['href']) if __name__ == '__main__': # url链接 url = 'https://zhengzhou.anjuke.com/sale/' # 页面爬取函数调用 get_page(url)
好了,那么咱们就开始详细页面的爬取了
哎,怎么动不动就要断电了,大学的坑啊,先把结果附上,闲了在补充,
import requests from bs4 import BeautifulSoup # 网页的请求头 header = { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 Safari/537.36' } def get_page(url): response = requests.get(url, headers=header) # 通过BeautifulSoup进行解析出每个房源详细列表并进行打印 soup_idex = BeautifulSoup(response.text, 'html.parser') result_li = soup_idex.find_all('li', {'class': 'list-item'}) # 进行循环遍历其中的房源详细列表 for i in result_li: # 由于BeautifulSoup传入的必须为字符串,所以进行转换 page_url = str(i) soup = BeautifulSoup(page_url, 'html.parser') # 由于通过class解析的为一个列表,所以只需要第一个参数 result_href = soup.find_all('a', {'class': 'houseListTitle'})[0] # 详细页面的函数调用 get_page_detail(result_href.attrs['href']) # 进行下一页的爬取 result_next_page = soup_idex.find_all('a', {'class': 'aNxt'}) if len(result_next_page) != 0: # 函数进行递归 get_page(result_next_page[0].attrs['href']) else: print('没有下一页了') # 进行字符串中空格,换行,tab键的替换及删除字符串两边的空格删除 def my_strip(s): return str(s).replace(" ", "").replace("\n", "").replace("\t", "").strip() # 由于频繁进行BeautifulSoup的使用,封装一下,很鸡肋 def my_Beautifulsoup(response): return BeautifulSoup(str(response), 'html.parser') # 详细页面的爬取 def get_page_detail(url): response = requests.get(url, headers=header) if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') # 标题什么的一大堆,哈哈 result_title = soup.find_all('h3', {'class': 'long-title'})[0] result_price = soup.find_all('span', {'class': 'light info-tag'})[0] result_house_1 = soup.find_all('p', {'class': 'first-col detail-col'}) result_house_2 = soup.find_all('p', {'class': 'second-col detail-col'}) result_house_3 = soup.find_all('p', {'class': 'third-col detail-col'}) soup_1 = my_Beautifulsoup(result_house_1) soup_2 = my_Beautifulsoup(result_house_2) soup_3 = my_Beautifulsoup(result_house_3) result_house_tar_1 = soup_1.find_all('dd') result_house_tar_2 = soup_2.find_all('dd') result_house_tar_3 = soup_3.find_all('dd') ''' 文博公寓,省实验中学,首付只需70万,大三房,诚心卖,价可谈 270万 宇泰文博公寓 金水-花园路-文博东路4号 2010年 普通住宅 3室2厅2卫 140平方米 南北 中层(共32层) 精装修 19285元/m² 81.00万 ''' print(my_strip(result_title.text), my_strip(result_price.text)) print(my_strip(result_house_tar_1[0].text), my_strip(my_Beautifulsoup(result_house_tar_1[1]).find_all('p')[0].text), my_strip(result_house_tar_1[2].text), my_strip(result_house_tar_1[3].text)) print(my_strip(result_house_tar_2[0].text), my_strip(result_house_tar_2[1].text), my_strip(result_house_tar_2[2].text), my_strip(result_house_tar_2[3].text)) print(my_strip(result_house_tar_3[0].text), my_strip(result_house_tar_3[1].text), my_strip(result_house_tar_3[2].text)) if __name__ == '__main__': # url链接 url = 'https://zhengzhou.anjuke.com/sale/' # 页面爬取函数调用 get_page(url)
由于自己边写博客,边写的代码,所以get_page函数中进行了一些改变,就是下一页的递归调用需要放在函数后面,以及进行封装了两个函数没有介绍,
而且数据存储到mysql也没有写,所以后期会继续跟进的,thank you!!!
相关推荐:
以上是python爬取安居客二手房网站数据方法分享的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

MySQL 有免费的社区版和收费的企业版。社区版可免费使用和修改,但支持有限,适合稳定性要求不高、技术能力强的应用。企业版提供全面商业支持,适合需要稳定可靠、高性能数据库且愿意为支持买单的应用。选择版本时考虑的因素包括应用关键性、预算和技术技能。没有完美的选项,只有最合适的方案,需根据具体情况谨慎选择。

文章介绍了MySQL数据库的上手操作。首先,需安装MySQL客户端,如MySQLWorkbench或命令行客户端。1.使用mysql-uroot-p命令连接服务器,并使用root账户密码登录;2.使用CREATEDATABASE创建数据库,USE选择数据库;3.使用CREATETABLE创建表,定义字段及数据类型;4.使用INSERTINTO插入数据,SELECT查询数据,UPDATE更新数据,DELETE删除数据。熟练掌握这些步骤,并学习处理常见问题和优化数据库性能,才能高效使用MySQL。

MySQL安装失败的原因主要有:1.权限问题,需以管理员身份运行或使用sudo命令;2.依赖项缺失,需安装相关开发包;3.端口冲突,需关闭占用3306端口的程序或修改配置文件;4.安装包损坏,需重新下载并验证完整性;5.环境变量配置错误,需根据操作系统正确配置环境变量。解决这些问题,仔细检查每个步骤,就能顺利安装MySQL。

MySQL下载文件损坏,咋整?哎,下载个MySQL都能遇到文件损坏,这年头真是不容易啊!这篇文章就来聊聊怎么解决这个问题,让大家少走弯路。读完之后,你不仅能修复损坏的MySQL安装包,还能对下载和安装过程有更深入的理解,避免以后再踩坑。先说说为啥下载文件会损坏这原因可多了去了,网络问题是罪魁祸首,下载过程中断、网络不稳定都可能导致文件损坏。还有就是下载源本身的问题,服务器文件本身就坏了,你下载下来当然也是坏的。另外,一些杀毒软件过度“热情”的扫描也可能造成文件损坏。诊断问题:确定文件是否真的损坏

MySQL拒启动?别慌,咱来排查!很多朋友安装完MySQL后,发现服务死活启动不了,心里那个急啊!别急,这篇文章带你从容应对,揪出幕后黑手!读完后,你不仅能解决这个问题,还能提升对MySQL服务的理解,以及排查问题的思路,成为一名更强大的数据库管理员!MySQL服务启动失败,原因五花八门,从简单的配置错误到复杂的系统问题都有可能。咱们先从最常见的几个方面入手。基础知识:服务启动流程简述MySQL服务启动,简单来说,就是操作系统加载MySQL相关的文件,然后启动MySQL守护进程。这其中涉及到配置

MySQL 可在无需网络连接的情况下运行,进行基本的数据存储和管理。但是,对于与其他系统交互、远程访问或使用高级功能(如复制和集群)的情况,则需要网络连接。此外,安全措施(如防火墙)、性能优化(选择合适的网络连接)和数据备份对于连接到互联网的 MySQL 数据库至关重要。

MySQL数据库性能优化指南在资源密集型应用中,MySQL数据库扮演着至关重要的角色,负责管理海量事务。然而,随着应用规模的扩大,数据库性能瓶颈往往成为制约因素。本文将探讨一系列行之有效的MySQL性能优化策略,确保您的应用在高负载下依然保持高效响应。我们将结合实际案例,深入讲解索引、查询优化、数据库设计以及缓存等关键技术。1.数据库架构设计优化合理的数据库架构是MySQL性能优化的基石。以下是一些核心原则:选择合适的数据类型选择最小的、符合需求的数据类型,既能节省存储空间,又能提升数据处理速度

MySQL性能优化需从安装配置、索引及查询优化、监控与调优三个方面入手。1.安装后需根据服务器配置调整my.cnf文件,例如innodb_buffer_pool_size参数,并关闭query_cache_size;2.创建合适的索引,避免索引过多,并优化查询语句,例如使用EXPLAIN命令分析执行计划;3.利用MySQL自带监控工具(SHOWPROCESSLIST,SHOWSTATUS)监控数据库运行状况,定期备份和整理数据库。通过这些步骤,持续优化,才能提升MySQL数据库性能。
