如何使用Python爬虫来进行JS加载数据网页的爬取
这次给大家带来如何使用Python爬虫来进行JS加载数据网页的爬取,使用Python爬虫来进行JS加载数据网页爬取的注意事项有哪些,下面就是实战案例,一起来看一下。
比如简书:Paste_Image.png我们来写个程序,爬取简书网站随便一个作者的所有文章,再对其所有文章进行分词统计程序运行统计的结果见文章:我统计了彭小六简书360篇文章中使用的词语需要的Python包包名作用selenium用于和phantomjs合作模拟浏览器访问网页lxml用于对html页面的解析,提取数据jieba用于对文章正文分词tld解析url,比如提取domain还需要下载phantomjs,selenium配合Paste_Image.png
我们来写个程序,爬取简书网站随便一个作者的所有文章,再对其所有文章进行分词统计
程序运行统计的结果见文章:
我统计了彭小六简书360篇文章中使用的词语
需要的Python包
作用
selenium 用于和phantomjs合作模拟浏览器访问网页
lxml 用于对html页面的解析,提取数据
jieba 用于对文章正文分词
tld 解析url, 比如提取domain
还需要下载 phantomjs,selenium配合phantomjs的使用代码中有体现
下载地址: http://phantomjs.org/
下面代码中,由于使用文件保存数据,而没有使用数据库保存数据,所以代码量比较多,其中主要代码并不多
直接上代码
# -*-coding:utf-8-*- import json import os, sys from random import randint from collections import Counter import jieba from lxml import etree from selenium import webdriver import time from tld import get_tld path = os.path.abspath(os.path.dirname(file)) class Spider(): ''' 获取简书作者的全部文章页面,并解析 ''' def init(self, start_url):'''我这里使用文件保存数据,没有使用数据库保存数据所有需要初始化文件保存路径使用本程序的你可以把文件保存改成数据库保存,建议使用nosql方便保存start_url:作者文章列表页面,比如http://www.jianshu.com/u/65fd4e5d930d:return:'''self.start_url = start_urlres = get_tld(self.start_url, as_object=True, fix_protocol=True)self.domain = "{}.{}".format(res.subdomain, res.tld)self.user_id = self.start_url.split("/")[-1]# 保存作者文章列表html页面post_list_dir = '{}/post-list'.format(path)self.post_lists_html = '{}/post_list_{}.html'.format(post_list_dir, self.user_id)# 保存作者所有文章的urlself.post_lists_urls = '{}/urls_{}.dat'.format(post_list_dir, self.user_id)# 保存文章原始网页:self.posts_html_dir = '{}/post-html/{}'.format(path, self.user_id)# 保存文章解析后的内容:self.posts_data_dir = '{}/post-data/{}'.format(path,self.user_id)# 保存文章统计后的结果:self.result_dir = '{}/result'.format(path)self.executable_path='{}/phantomjs-2.1.1-linux-x86_64/bin/phantomjs'.format(path)# mkdirif not os.path.exists(self.posts_html_dir): os.makedirs(self.posts_html_dir)if not os.path.exists(self.posts_data_dir): os.makedirs(self.posts_data_dir)if not os.path.exists(post_list_dir): os.makedirs(post_list_dir)if not os.path.exists(self.result_dir): os.makedirs(self.result_dir)# 网上随笔找的免费代理ipself.ips = ['61.167.222.17:808','58.212.121.72:8998', '111.1.3.36:8000', '125.117.133.74:9000'] def post_list_page(self):'''获取文章列表页面,以及文章链接:return:'''obj = webdriver.PhantomJS(executable_path=self.executable_path)obj.set_page_load_timeout(30)obj.maximize_window()# 随机一个代理ipip_num = len(self.ips)ip = self.ips[randint(0,ip_num-1)]obj.http_proxy = ipobj.get(self.start_url)# 文章总数量sel = etree.HTML(obj.page_source)r = sel.xpath("//div[@class='main-top']//div[@class='info']//li[3]//p//text()")if r: crawl_post_n = int(r[0])else: print("[Error] 提取文章总书的xpath不正确") sys.exit()n = crawl_post_n/9i = 1while n: t = randint(2,5) time.sleep(t) js = "var q=document.body.scrollTop=100000" # 页面一直下滚 obj.execute_script(js) n -= 1 i += 1# 然后把作者文章列表页面的html(保存到数据库,或文本保存)of = open(self.post_lists_html, "w")of.write(obj.page_source)of.close()# 我们也顺便把作者所有的文章链接提取出来(保存到数据库,或文本保存)of = open(self.post_lists_urls, "w")sel = etree.HTML(obj.page_source)results = sel.xpath("//div[@id='list-container']//li//a[@class='title']/@href")for result in results: of.write("http://{}{}".format(self.domain, result.strip())) of.write("/n")of.close() def posts_html(self):'''获取文章页面html:return:'''of = open(self.post_lists_urls)urls = of.readlines()ip_num = len(self.ips)obj = webdriver.PhantomJS(executable_path=self.executable_path)obj.set_page_load_timeout(10)obj.maximize_window()for url in urls: # 随机一个代理ip ip = self.ips[randint(0,ip_num-1)] obj.http_proxy = ip url = url.strip() print("代理ip:{}".format(ip)) print("网页:{}".format(url)) try: obj.get(url) except: print("Error:{}".format(url)) post_id = url.split("/")[-1] of = open("{}/{}_{}.html".format(self.posts_html_dir, obj.title, post_id), "w") of.write(obj.page_source) of.close() t = randint(1,5) time.sleep(t) def page_parsing(self):'''html解析:return:'''# 只获取匹配的第一个xpath_rule_0 ={ "author":"//div[@class='author']//span[@class='name']//text()", # 作者名字 "author_tag":"//div[@class='author']//span[@class='tag']//text()",# 作者标签 "postdate":"//div[@class='author']//span[@class='publish-time']//text()", # 发布时间 "word_num":"//div[@class='author']//span[@class='wordage']//text()",#字数 "notebook":"//div[@class='show-foot']//a[@class='notebook']/span/text()",#文章属于的目录 "title":"//div[@class='article']/h1[@class='title']//text()",#文章标题}# 获取匹配的所有,并拼接成一个字符串的xpath_rule_all_tostr ={ "content":"//div[@class='show-content']//text()",#正文}# 获取匹配的所有,保存数组形式xpath_rule_all ={ "collection":"//div[@class='include-collection']//a[@class='item']//text()",#收入文章的专题}# 遍历所有文章的html文件,如果保存在数据库的则直接查询出来list_dir = os.listdir(self.posts_html_dir)for file in list_dir: file = "{}/{}".format(self.posts_html_dir, file) if os.path.isfile(file): of = open(file) html = of.read() sel = etree.HTML(html) of.close() # 解析 post_id = file.split("_")[-1].strip(".html") doc = {'url':'http://{}/p/{}'.format(self.domain,post_id)} for k,rule in xpath_rule_0.items(): results = sel.xpath(rule) if results: doc[k] = results[0] else: doc[k] = None for k,rule in xpath_rule_all_tostr.items(): results = sel.xpath(rule) if results: doc[k] = "" for result in results: if result.strip(): doc[k] = "{}{}".format(doc[k], result) else: doc[k] = None for k,rule in xpath_rule_all.items(): results = sel.xpath(rule) if results: doc[k] = results else: doc[k] = None if doc["word_num"]: doc["word_num"] = int(doc["word_num"].strip('字数').strip()) else: doc["word_num"] = 0 # 保存到数据库或者文件中 of = open("{}/{}.json".format(self.posts_data_dir, post_id), "w") of.write(json.dumps(doc)) of.close() def statistics(self):'''分开对每篇文章的进行分词统计,也统计全部文章分词:return: '''# 遍历所有文章的html文件,如果保存在数据库的则直接查询出来word_sum = {} #正文全部词语统计title_word_sum = {} #标题全部词语统计post_word_cnt_list = [] #每篇文章使用的词汇数量# 正文统计数据保存list_dir = os.listdir(self.posts_data_dir)for file in list_dir: file = "{}/{}".format(self.posts_data_dir, file) if os.path.isfile(file): of = open(file) str = of.read() doc = json.loads(str) # 正文统计:精确模式,默认hi精确模式,所以可以不指定cut_all=False words = jieba.cut(doc["content"], cut_all=False) data = dict(Counter(words)) data = sorted(data.iteritems(), key=lambda d: d[1], reverse=True) word_cnt = 0 for w in data: # 只统计超过1个字的词语 if len(w[0]) < 2: continue # 统计到全部文章词语中 if w[0] in word_sum: word_sum[w[0]]["cnt"] += w[1] word_sum[w[0]]["post_cnt"] += 1 else: word_sum[w[0]] = {} word_sum[w[0]]["cnt"] = w[1] word_sum[w[0]]["post_cnt"] = 1 word_cnt += 1 post_word_cnt_list.append((word_cnt, doc["postdate"], doc["title"], doc["url"])) # 标题统计:精确模式,默认hi精确模式,所以可以不指定cut_all=False words = jieba.cut(doc["title"], cut_all=False) data = dict(Counter(words)) data = sorted(data.iteritems(), key=lambda d: d[1], reverse=True) for w in data: # 只统计超过1个字的词语 if len(w[0]) < 2: continue # 统计到全部文章词语中 if w[0] in title_word_sum: title_word_sum[w[0]]["cnt"] += w[1] title_word_sum[w[0]]["post_cnt"] += 1 else: title_word_sum[w[0]] = {} title_word_sum[w[0]]["cnt"] = w[1] title_word_sum[w[0]]["post_cnt"] = 1 post_word_cnt_list = sorted(post_word_cnt_list, key=lambda d: d[0], reverse=True)wf = open("{}/content_statis_{}.dat".format(self.result_dir, self.user_id), "w")wf.write("| 词语 | 发布日期 | 标题 | 链接 |/n")for pw in post_word_cnt_list: wf.write("| {} | {} | {}| {}|/n".format(pw[0],pw[1],pw[2],pw[3]))wf.close()# 全部文章正文各词语 按使用次数 统计结果wf = open("{}/content_statis_sum_use-num_{}.dat".format(self.result_dir, self.user_id), "w")word_sum_t = sorted(word_sum.iteritems(), key=lambda d: d[1]['cnt'], reverse=True)wf.write("| 分词 | 使用次数 | 使用的文章数量|/n")for w in word_sum_t: wf.write("| {} | {} | {}|/n".format(w[0], w[1]["cnt"], w[1]["post_cnt"]))wf.close()# 全部文章正文各词语 按使用文章篇数 统计结果wf = open("{}/content_statis_sum_post-num_{}.dat".format(self.result_dir, self.user_id), "w")word_sum_t = sorted(word_sum.iteritems(), key=lambda d: d[1]['post_cnt'], reverse=True)wf.write("| 分词 | 使用的文章数量 | 使用次数 |/n")for w in word_sum_t: wf.write("| {} | {} | {}|/n".format(w[0], w[1]["post_cnt"], w[1]["cnt"]))wf.close() # 全部文章title各词语 按使用次数 统计结果wf = open("{}/title_statis_sum_use-num_{}.dat".format(self.result_dir,self.user_id), "w")title_word_sum_t = sorted(title_word_sum.iteritems(), key=lambda d: d[1]['cnt'], reverse=True)wf.write("| 分词 | 使用次数 | 使用的文章数量|/n")for w in title_word_sum_t: wf.write("| {} | {} | {}|/n".format(w[0], w[1]["cnt"], w[1]["post_cnt"]))wf.close()# 全部文章title各词语 按使用次数 统计结果wf = open("{}/title_statis_sum_post-num_{}.dat".format(self.result_dir, self.user_id), "w")title_word_sum_t = sorted(title_word_sum.iteritems(), key=lambda d: d[1]['post_cnt'], reverse=True)wf.write("| 分词 | 使用的文章数量 | 使用次数 |/n")for w in title_word_sum_t: wf.write("| {} | {} | {}|/n".format(w[0], w[1]["post_cnt"], w[1]["cnt"]))wf.close()print("一共统计文章:{} 篇".format(len(list_dir)))print("所有正文-使用了2字及以上词语:{} 个".format(len(word_sum_t)))print("所有标题-使用了2字及以上词语:{} 个".format(len(title_word_sum_t))) if name == 'main': sp = Spider(start_url="http://www.jianshu.com/u/65fd4e5d930d") print("获取作者文章列表页面...") sp.post_list_page() print("获取作者所有文章页面...") #sp.posts_html() print("解析作者所有文章页面...") #sp.page_parsing() print("简单统计分析文章词汇...") #sp.statistics()
程序运行统计的结果见文章: 我统计了彭小六简书360篇文章中使用的词语
相信看了这些案例你已经掌握了方法,更多精彩请关注php中文网其它相关文章!
相关阅读:
在html里怎么添加flash视频格式(flv、swf)文件
以上是如何使用Python爬虫来进行JS加载数据网页的爬取的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

VS Code 扩展存在恶意风险,例如隐藏恶意代码、利用漏洞、伪装成合法扩展。识别恶意扩展的方法包括:检查发布者、阅读评论、检查代码、谨慎安装。安全措施还包括:安全意识、良好习惯、定期更新和杀毒软件。

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

VS Code 可以在 Mac 上使用。它具有强大的扩展功能、Git 集成、终端和调试器,同时还提供了丰富的设置选项。但是,对于特别大型项目或专业性较强的开发,VS Code 可能会有性能或功能限制。
