python实现树形打印目录结构_python
这篇文章主要为大家详细介绍了python树形打印目录结构的相关代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
本文实例为大家分享了python树形打印目录结构的具体代码,供大家参考,具体内容如下
前言
这两天整理数据文件的时候发现,一层层的点击文件夹查看很繁琐,于是想写一个工具来递归打印出文件目录的树形结构,网上找了一些资料几乎都是使用的os.walk, 调试了以后发现返回的貌似的是一个“生成器”,只需要for循环即可,可是这样得到的好像是BFS的结构,并不是我想要的树形结构,最后终于发现了os.listdir这个函数,可是使用它来写一个深度优先搜索,只要递归调用就能解决我的问题。
代码
#!/usr/bin/env python3 # -*- coding: utf-8 -*- #a test for traverse directory __author__ = 'AlbertS' import os import os.path def dfs_showdir(path, depth): if depth == 0: print("root:[" + path + "]") for item in os.listdir(path): if '.git' not in item: print("| " * depth + "+--" + item) newitem = path +'/'+ item if os.path.isdir(newitem): dfs_showdir(newitem, depth +1) if __name__ == '__main__': dfs_showdir('.', 0)
运行效果
root:[.] +--1111.segmentfault.com | +--01decode.py | +--01string.txt | +--1111.segmentfault.com.tar.gz +--urllib_test.py +--use_module.py +--water_deal | +--water_pouring2.py +--web | +--module_test.py | +--__init__.py | +--__pycache__ | | +--module_test.cpython-34.pyc | | +--__init__.cpython-34.pyc +--web_crawler | +--bg_teaser.svg | +--crawler_images | | +--10393478-1.jpg | | +--13802226-1.jpg | | +--169b1b76356f636.jpg | | +--1a774de56fb4bf2.jpg | | +--small_event_dft.jpg | | +--ypy_qr.jpg | +--crawler_image_test.py | +--crawler_test.py | +--crawler_website | | +--crawler_article_set | | | +--aiohttp.html | | | +--asyncio.html | | | +--async_await.html | | | +--base64.html
总结
一开始写的时候发现只能递归一层文件夹,后来发现问题出现在os.path.isdir函数这里。
传给os.path.isdir函数函数的参数只能是一个绝对路径,或者相对于工作目录的相对路径。
有了上面发现的问题,才有了newitem变量拼接的过程。
相关推荐:
以上是python实现树形打印目录结构_python的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

在CentOS系统上高效训练PyTorch模型,需要分步骤进行,本文将提供详细指南。一、环境准备:Python及依赖项安装:CentOS系统通常预装Python,但版本可能较旧。建议使用yum或dnf安装Python3并升级pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。CUDA与cuDNN(GPU加速):如果使用NVIDIAGPU,需安装CUDATool

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

在CentOS下选择PyTorch版本时,需要考虑以下几个关键因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU并且希望利用GPU加速,需要选择支持相应CUDA版本的PyTorch。可以通过运行nvidia-smi命令查看你的显卡支持的CUDA版本。CPU版本:如果没有GPU或不想使用GPU,可以选择CPU版本的PyTorch。2.Python版本PyTorch

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所
