首页 后端开发 Python教程 Python并发处理asyncio包如何使用

Python并发处理asyncio包如何使用

Apr 09, 2018 am 09:53 AM
asyncio python 如何

这次给大家带来Python并发处理asyncio包如何使用,Python并发处理asyncio包使用的注意事项有哪些,下面就是实战案例,一起来看一下。

导语:本文章记录了本人在学习Python基础之控制流程篇的重点知识及个人心得,打算入门Python的朋友们可以来一起学习并交流。

本文重点:

1、了解asyncio包的功能和使用方法;
2、了解如何避免阻塞型调用;
3、学会使用协程避免回调地狱。

一、使用asyncio包做并发编程

1、并发与并行

并发:一次处理多件事。
并行:一次做多件事。
并发用于制定方案,用来解决可能(但未必)并行的问题。并发更好。

2、asyncio概述

了解asyncio的4个特点:

  1. asyncio包使用事件循环驱动的协程实现并发。

  2. 适合asyncio API的协程在定义体中必须使用yield from,而不能使用yield。

  3. 使用asyncio处理的协程,需在定义体上使用@asyncio.coroutine装饰。装饰的功能在于凸显协程,同时当协程不产出值,协程会被垃圾回收。

  4. Python3.4起,asyncio包只直接支持TCP和UDP协议。如果想使用asyncio实现HTTP客户端和服务器时,常使用aiohttp包。

在协程中使用yield from需要注意两点:

  1. 使用yield froml链接的多个协程最终必须由不是协程的调用方驱动,调用方显式或隐式在最外层委派生成器上调用next()函数或 .send()方法。

  2. 链条中最内层的子生成器必须是简单的生成器(只使用yield)或可迭代的对象

但在asyncio包的API中使用yield from还需注意两个细节:

  1. asyncio包中编写的协程链条始终通过把最外层委派生成器传给asyncio包API中的某个函数驱动,例如loop.run_until_complete()。即不通过调用next()函数或 .send()方法驱动协程。

  2. 编写的协程链条最终通过yield from把职责委托给asyncio包中的某个协程函数或协程方法。即最内层的子生成器是库中真正执行I/O操作的函数,而不是我们自己编写的函数。

实例——通过asyncio包和协程以动画形式显示文本式旋转指针:

import asyncio
import itertools
import sys
@asyncio.coroutine # 交给 asyncio 处理的协程要使用 @asyncio.coroutine 装饰
def spin(msg):
  for char in itertools.cycle('|/-\\'):
    status = char + ' ' + msg
    print(status)
    try:
      yield from asyncio.sleep(.1) # 使用 yield from asyncio.sleep(.1) 代替 time.sleep(.1),这样的休眠不会阻塞事件循环。
    except asyncio.CancelledError: # 如果 spin 函数苏醒后抛出 asyncio.CancelledError 异常,其原因是发出了取消请求,因此退出循环。
      break
@asyncio.coroutine
def slow_function(): # slow_function 函数是协程,在用休眠假装进行 I/O 操作时,使用 yield from 继续执行事件循环。
  # 假装等待I/O一段时间
  yield from asyncio.sleep(3) # yield from asyncio.sleep(3) 表达式把控制权交给主循环,在休眠结束后恢复这个协程。
  return 42
@asyncio.coroutine
def supervisor(): # supervisor 函数也是协程
  spinner = asyncio.async(spin('thinking!')) # asyncio.async(...) 函数排定 spin 协程的运行时间,使用一个 Task 对象包装spin 协程,并立即返回。
  print('spinner object:', spinner)
  result = yield from slow_function() # 驱动 slow_function() 函数。结束后,获取返回值。
# 同时,事件循环继续运行,因为slow_function 函数最后使用 yield from asyncio.sleep(3) 表达式把控制权交回给了主循环。
  spinner.cancel() # Task 对象可以取消;取消后会在协程当前暂停的 yield 处抛出 asyncio.CancelledError 异常。协程可以捕获这个异常,也可以延迟取消,甚至拒绝取消。
  return result
if name == 'main':
  loop = asyncio.get_event_loop() # 获取事件循环的引用
  result = loop.run_until_complete(supervisor()) # 驱动 supervisor 协程,让它运行完毕;这个协程的返回值是这次调用的返回值。
  loop.close()
  print('Answer:', result)
登录后复制

3、线程与协程对比

线程:调度程序在任何时候都能中断线程。必须记住保留锁。去保护程序中的重要部分,防止多步操作在执行的过程中中断,防止数据处于无效状态。

协程:默认会做好全方位保护,以防止中断。对协程来说无需保留锁,在多个线程之间同步操作,协程自身就会同步,因为在任意时刻只有一个协程运行。

4、从期物、任务和协程中产出

在asyncio包中,期物和协程关系紧密,因为可以使用yield from从asyncio.Future对象中产出结果。这意味着,如果foo是协程函数,抑或是返回Future或Task实例的普通函数,那么可以这样写:res=yield from foo()。这是asyncio包中很多地方可以互换协程与期物的原因之一。

二、避免阻塞型调用

1、有两种方法能避免阻塞型调用中止整个应用程序的进程:

  1. 在单独的线程中运行各个阻塞型操作。

  2. 把每个阻塞型操作转换成非阻塞的异步调用。

使用多线程处理大量连接时将耗费过多的内存,故此通常使用回调来实现异步调用。

2、使用Executor对象防止阻塞事件循环:

使用loop.run_in_executor把阻塞的作业(例如保存文件)委托给线程池做。

@asyncio.coroutine
def download_one(cc, base_url, semaphore, verbose):
  try:
    with (yield from semaphore):
      image = yield from get_flag(base_url, cc)
  except web.HTTPNotFound:
    status = HTTPStatus.not_found
    msg = 'not found'
  except Exception as exc:
    raise FetchError(cc) from exc
  else:
    loop = asyncio.get_event_loop() # 获取事件循环对象的引用
    loop.run_in_executor(None, # None 使用默认的 TrreadPoolExecutor 实例
        save_flag, image, cc.lower() + '.gif') # 传入可调用对象
    status = HTTPStatus.ok
    msg = 'OK'
  if verbose and msg:
    print(cc, msg)
  return Result(status, cc)
登录后复制

asyncio 的事件循环背后维护一个 ThreadPoolExecutor 对象,我们可以调用 run_in_executor 方法, 把可调用的对象发给它执行。

三、从回调到期物和协程

回调地狱:如果一个操作需要依赖之前操作的结果,那就得嵌套回调。

Python 中的回调地狱:

def stage1(response1):
  request2 = step1(response1)
  api_call2(request2, stage2)
def stage2(response2):
  request3 = step2(response2)
  api_call3(request3, stage3)
def stage3(response3):
  step3(response3)
api_call1(request1, step1)
登录后复制

使用 协程 和 yield from 结构做异步编程,无需用回调:

@asyncio.coroutine
def three_stages(request1):
  response1 = yield from api_call1()
  request2 = step1(response1)
  response2 = yield from api_call2(request2)
  request3 = step2(response2)
  response3 = yield from api_call3(request3)
  step3(response3)
loop.create_task(three_stages(request1))
# 协程不能直接调用,必须用事件循环显示指定协程的执行时间,或者在其他排定了执行时间的协程中使用 yield from 表达式把它激活
登录后复制

四、使用asyncio包编写服务器

  1. 使用asyncio包能实现TCP和HTTP服务器

  2. Web服务将成为asyncio包的重要使用场景。

相信看了本文案例你已经掌握了方法,更多精彩请关注php中文网其它相关文章!

推荐阅读:

python字符串如何转为二维数组

怎么用Vue导出excel表格功能

以上是Python并发处理asyncio包如何使用的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:代码示例和比较 PHP和Python:代码示例和比较 Apr 15, 2025 am 12:07 AM

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

CentOS上如何进行PyTorch模型训练 CentOS上如何进行PyTorch模型训练 Apr 14, 2025 pm 03:03 PM

在CentOS系统上高效训练PyTorch模型,需要分步骤进行,本文将提供详细指南。一、环境准备:Python及依赖项安装:CentOS系统通常预装Python,但版本可能较旧。建议使用yum或dnf安装Python3并升级pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。CUDA与cuDNN(GPU加速):如果使用NVIDIAGPU,需安装CUDATool

CentOS上PyTorch的GPU支持情况如何 CentOS上PyTorch的GPU支持情况如何 Apr 14, 2025 pm 06:48 PM

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

docker原理详解 docker原理详解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

Python vs. JavaScript:社区,图书馆和资源 Python vs. JavaScript:社区,图书馆和资源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

CentOS下PyTorch版本怎么选 CentOS下PyTorch版本怎么选 Apr 14, 2025 pm 02:51 PM

在CentOS下选择PyTorch版本时,需要考虑以下几个关键因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU并且希望利用GPU加速,需要选择支持相应CUDA版本的PyTorch。可以通过运行nvidia-smi命令查看你的显卡支持的CUDA版本。CPU版本:如果没有GPU或不想使用GPU,可以选择CPU版本的PyTorch。2.Python版本PyTorch

minio安装centos兼容性 minio安装centos兼容性 Apr 14, 2025 pm 05:45 PM

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

CentOS上PyTorch的分布式训练如何操作 CentOS上PyTorch的分布式训练如何操作 Apr 14, 2025 pm 06:36 PM

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

See all articles