首页 > 后端开发 > Python教程 > Python数据怎么处理numpy.median

Python数据怎么处理numpy.median

php中世界最好的语言
发布: 2018-04-09 11:32:27
原创
3191 人浏览过

这次给大家带来Python数据怎么处理numpy.median,Python数据处理numpy.median的注意事项有哪些,下面就是实战案例,一起来看一下。

numpy模块下的median作用为:

计算沿指定轴的中位数

返回数组元素的中位数

其函数接口为:

median(a, 
axis=None, 
out=None,
overwrite_input=False, 
keepdims=False)
登录后复制

其中各参数为:

a:输入的数组;

axis:计算哪个轴上的中位数,比如输入是二维数组,那么axis=0对应行,axis=1对应列;

out:用于放置求取中位数后的数组。 它必须具有与预期输出相同的形状和缓冲区长度;

overwrite_input:一个bool型的参数,默认为Flase。如果为True那么将直接在数组内存中计算,这意味着计算之后原数组没办法保存,但是好处在于节省内存资源,Flase则相反;

keepdims:一个bool型的参数,默认为Flase。如果为True那么求取中位数的那个轴将保留在结果中;

>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],
    [ 3, 2, 1]])
>>> np.median(a)
3.5
>>> np.median(a, axis=0)
array([ 6.5, 4.5, 2.5])
>>> np.median(a, axis=1)
array([ 7., 2.])
>>> m = np.median(a, axis=0)
>>> out = np.zeros_like(m)
>>> np.median(a, axis=0, out=m)
array([ 6.5, 4.5, 2.5])
>>> m
array([ 6.5, 4.5, 2.5])
>>> b = a.copy()
>>> np.median(b, axis=1, overwrite_input=True)
array([ 7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.median(b, axis=None, overwrite_input=True)
3.5
登录后复制

相信看了本文案例你已经掌握了方法,更多精彩请关注php中文网其它相关文章!

推荐阅读:

python怎么逐行读写txt文件

python怎么批量读取txt文件为DataFrame格式

以上是Python数据怎么处理numpy.median的详细内容。更多信息请关注PHP中文网其他相关文章!

相关标签:
来源:php.cn
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板