首页 > 后端开发 > Python教程 > Python之获取与简单处理金融数据

Python之获取与简单处理金融数据

零到壹度
发布: 2018-04-09 15:44:48
原创
3140 人浏览过

Python的功能不可以说不大,在金融数据分析里面有着很方便的应用。本篇文章给大家分享的内容是Python之获取与简单处理金融数据,有着一定的参考价值,有需要的朋友可以参考一下

1.数据获取

pandas包中有自带的数据获取接口,详细的大家可以去其官网上找,是io.data下的DataReader方法。

import numpy as np
import pandas as pd
import pandas.io.data as web
import math
#从雅虎财经获取DAX指数的数据
DAX = web.DataReader(name='^GDAXI', data_source='yahoo',start = '2000-1-1')
#查看一下数据的一些信息 上面这一方法返回的是一个pandas dataframe的数据结构
print DAX.info()
#绘制收盘价的曲线
DAX['Close'].plot(figsize=(8,5))
登录后复制

我们获得的数据是dataframe的结构,毕竟是pandas的接口的嘛。然后我们绘制一下收盘价曲线。


这个是我们获取的数据的信息。


绘制出来的收盘价曲线是这样的。

2.简单的数据处理

有了股票价格,我们就计算一下每天的涨跌幅度,换句话说,就是每天的收益率,以及股价的移动平均和股价的波动率。

#计算每日的涨跌幅
DAX['Return'] = np.log(DAX['Close']/DAX['Close'].shift(1))
print DAX[['Close','Return']].tail()
#将收盘价与每日涨跌幅度放在一张图上
DAX[['Close','Return']].plot(subplots = True,style = 'b',figsize=(8,5))
#42与252个交易日为窗口取移动平均
DAX['42d']=pd.rolling_mean(DAX['Close'],window=42)
DAX['252d']=pd.rolling_mean(DAX['Close'],window=252)
#绘制MA与收盘价
DAX[['Close','42d','252d']].plot(figsize=(8,5))
#计算波动率,然后根据均方根法则进行年化
DAX['Mov_Vol']=pd.rolling_std(DAX['Return'],window = 252)*math.sqrt(252)
DAX[['Close','Mov_Vol','Return']].plot(subplots = True, style = 'b',figsize = (8,7))
登录后复制


我们可以掌握这种subplots的绘图方法,把几张趋势图片放在一起。


这是移动平均线的图片,subplots的属性为false,那么就是叠加在一起绘制。


        这是市场的波动率和股市的关系。和FRM中提到的一样,在市场低迷,或者说,金融危机的时候,市场的波动率急剧增加。于是,就有了恐慌指数这个东西,也就是Vix,其实就是市场的波动率指数。


相关推荐:

Python在金融,数据分析,和人工智能中的应用

使用Python获取Google,Yahoo金融数据工具

以上是Python之获取与简单处理金融数据的详细内容。更多信息请关注PHP中文网其他相关文章!

相关标签:
来源:php.cn
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板