神经网络(BP)算法Python实现及应用
这篇文章主要为大家详细介绍了Python实现神经网络(BP)算法及简单应用,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
本文实例为大家分享了Python实现神经网络算法及应用的具体代码,供大家参考,具体内容如下
首先用Python实现简单地神经网络算法:
import numpy as np # 定义tanh函数 def tanh(x): return np.tanh(x) # tanh函数的导数 def tan_deriv(x): return 1.0 - np.tanh(x) * np.tan(x) # sigmoid函数 def logistic(x): return 1 / (1 + np.exp(-x)) # sigmoid函数的导数 def logistic_derivative(x): return logistic(x) * (1 - logistic(x)) class NeuralNetwork: def __init__(self, layers, activation='tanh'): """ 神经网络算法构造函数 :param layers: 神经元层数 :param activation: 使用的函数(默认tanh函数) :return:none """ if activation == 'logistic': self.activation = logistic self.activation_deriv = logistic_derivative elif activation == 'tanh': self.activation = tanh self.activation_deriv = tan_deriv # 权重列表 self.weights = [] # 初始化权重(随机) for i in range(1, len(layers) - 1): self.weights.append((2 * np.random.random((layers[i - 1] + 1, layers[i] + 1)) - 1) * 0.25) self.weights.append((2 * np.random.random((layers[i] + 1, layers[i + 1])) - 1) * 0.25) def fit(self, X, y, learning_rate=0.2, epochs=10000): """ 训练神经网络 :param X: 数据集(通常是二维) :param y: 分类标记 :param learning_rate: 学习率(默认0.2) :param epochs: 训练次数(最大循环次数,默认10000) :return: none """ # 确保数据集是二维的 X = np.atleast_2d(X) temp = np.ones([X.shape[0], X.shape[1] + 1]) temp[:, 0: -1] = X X = temp y = np.array(y) for k in range(epochs): # 随机抽取X的一行 i = np.random.randint(X.shape[0]) # 用随机抽取的这一组数据对神经网络更新 a = [X[i]] # 正向更新 for l in range(len(self.weights)): a.append(self.activation(np.dot(a[l], self.weights[l]))) error = y[i] - a[-1] deltas = [error * self.activation_deriv(a[-1])] # 反向更新 for l in range(len(a) - 2, 0, -1): deltas.append(deltas[-1].dot(self.weights[l].T) * self.activation_deriv(a[l])) deltas.reverse() for i in range(len(self.weights)): layer = np.atleast_2d(a[i]) delta = np.atleast_2d(deltas[i]) self.weights[i] += learning_rate * layer.T.dot(delta) def predict(self, x): x = np.array(x) temp = np.ones(x.shape[0] + 1) temp[0:-1] = x a = temp for l in range(0, len(self.weights)): a = self.activation(np.dot(a, self.weights[l])) return a
使用自己定义的神经网络算法实现一些简单的功能:
小案例:
X: Y
0 0 0
0 1 1
1 0 1
1 1 0
from NN.NeuralNetwork import NeuralNetwork import numpy as np nn = NeuralNetwork([2, 2, 1], 'tanh') temp = [[0, 0], [0, 1], [1, 0], [1, 1]] X = np.array(temp) y = np.array([0, 1, 1, 0]) nn.fit(X, y) for i in temp: print(i, nn.predict(i))
发现结果基本机制,无限接近0或者无限接近1
第二个例子:识别图片中的数字
导入数据:
from sklearn.datasets import load_digits import pylab as pl digits = load_digits() print(digits.data.shape) pl.gray() pl.matshow(digits.images[0]) pl.show()
观察下:大小:(1797, 64)
数字0
接下来的代码是识别它们:
import numpy as np from sklearn.datasets import load_digits from sklearn.metrics import confusion_matrix, classification_report from sklearn.preprocessing import LabelBinarizer from NN.NeuralNetwork import NeuralNetwork from sklearn.cross_validation import train_test_split # 加载数据集 digits = load_digits() X = digits.data y = digits.target # 处理数据,使得数据处于0,1之间,满足神经网络算法的要求 X -= X.min() X /= X.max() # 层数: # 输出层10个数字 # 输入层64因为图片是8*8的,64像素 # 隐藏层假设100 nn = NeuralNetwork([64, 100, 10], 'logistic') # 分隔训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y) # 转化成sklearn需要的二维数据类型 labels_train = LabelBinarizer().fit_transform(y_train) labels_test = LabelBinarizer().fit_transform(y_test) print("start fitting") # 训练3000次 nn.fit(X_train, labels_train, epochs=3000) predictions = [] for i in range(X_test.shape[0]): o = nn.predict(X_test[i]) # np.argmax:第几个数对应最大概率值 predictions.append(np.argmax(o)) # 打印预测相关信息 print(confusion_matrix(y_test, predictions)) print(classification_report(y_test, predictions))
结果:
矩阵对角线代表预测正确的数量,发现正确率很多
这张表更直观地显示出预测正确率:
共450个案例,成功率94%
相关推荐:
以上是神经网络(BP)算法Python实现及应用的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

在CentOS系统上安装PyTorch,需要仔细选择合适的版本,并考虑以下几个关键因素:一、系统环境兼容性:操作系统:建议使用CentOS7或更高版本。CUDA与cuDNN:PyTorch版本与CUDA版本密切相关。例如,PyTorch1.9.0需要CUDA11.1,而PyTorch2.0.1则需要CUDA11.3。cuDNN版本也必须与CUDA版本匹配。选择PyTorch版本前,务必确认已安装兼容的CUDA和cuDNN版本。Python版本:PyTorch官方支

在CentOS上更新PyTorch到最新版本,可以按照以下步骤进行:方法一:使用pip升级pip:首先确保你的pip是最新版本,因为旧版本的pip可能无法正确安装最新版本的PyTorch。pipinstall--upgradepip卸载旧版本的PyTorch(如果已安装):pipuninstalltorchtorchvisiontorchaudio安装最新
