用TensorFlow实现多类支持向量机的示例代码
这篇文章主要介绍了用TensorFlow实现多类支持向量机的示例代码,现在分享给大家,也给大家做个参考。一起过来看看吧
本文将详细展示一个多类支持向量机分类器训练iris数据集来分类三种花。
SVM算法最初是为二值分类问题设计的,但是也可以通过一些策略使得其能进行多类分类。主要的两种策略是:一对多(one versus all)方法;一对一(one versus one)方法。
一对一方法是在任意两类样本之间设计创建一个二值分类器,然后得票最多的类别即为该未知样本的预测类别。但是当类别(k类)很多的时候,就必须创建k!/(k-2)!2!个分类器,计算的代价还是相当大的。
另外一种实现多类分类器的方法是一对多,其为每类创建一个分类器。最后的预测类别是具有最大SVM间隔的类别。本文将实现该方法。
我们将加载iris数据集,使用高斯核函数的非线性多类SVM模型。iris数据集含有三个类别,山鸢尾、变色鸢尾和维吉尼亚鸢尾(I.setosa、I.virginica和I.versicolor),我们将为它们创建三个高斯核函数SVM来预测。
# Multi-class (Nonlinear) SVM Example #---------------------------------- # # This function wll illustrate how to # implement the gaussian kernel with # multiple classes on the iris dataset. # # Gaussian Kernel: # K(x1, x2) = exp(-gamma * abs(x1 - x2)^2) # # X : (Sepal Length, Petal Width) # Y: (I. setosa, I. virginica, I. versicolor) (3 classes) # # Basic idea: introduce an extra dimension to do # one vs all classification. # # The prediction of a point will be the category with # the largest margin or distance to boundary. import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from sklearn import datasets from tensorflow.python.framework import ops ops.reset_default_graph() # Create graph sess = tf.Session() # Load the data # 加载iris数据集并为每类分离目标值。 # 因为我们想绘制结果图,所以只使用花萼长度和花瓣宽度两个特征。 # 为了便于绘图,也会分离x值和y值 # iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)] iris = datasets.load_iris() x_vals = np.array([[x[0], x[3]] for x in iris.data]) y_vals1 = np.array([1 if y==0 else -1 for y in iris.target]) y_vals2 = np.array([1 if y==1 else -1 for y in iris.target]) y_vals3 = np.array([1 if y==2 else -1 for y in iris.target]) y_vals = np.array([y_vals1, y_vals2, y_vals3]) class1_x = [x[0] for i,x in enumerate(x_vals) if iris.target[i]==0] class1_y = [x[1] for i,x in enumerate(x_vals) if iris.target[i]==0] class2_x = [x[0] for i,x in enumerate(x_vals) if iris.target[i]==1] class2_y = [x[1] for i,x in enumerate(x_vals) if iris.target[i]==1] class3_x = [x[0] for i,x in enumerate(x_vals) if iris.target[i]==2] class3_y = [x[1] for i,x in enumerate(x_vals) if iris.target[i]==2] # Declare batch size batch_size = 50 # Initialize placeholders # 数据集的维度在变化,从单类目标分类到三类目标分类。 # 我们将利用矩阵传播和reshape技术一次性计算所有的三类SVM。 # 注意,由于一次性计算所有分类, # y_target占位符的维度是[3,None],模型变量b初始化大小为[3,batch_size] x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32) y_target = tf.placeholder(shape=[3, None], dtype=tf.float32) prediction_grid = tf.placeholder(shape=[None, 2], dtype=tf.float32) # Create variables for svm b = tf.Variable(tf.random_normal(shape=[3,batch_size])) # Gaussian (RBF) kernel 核函数只依赖x_data gamma = tf.constant(-10.0) dist = tf.reduce_sum(tf.square(x_data), 1) dist = tf.reshape(dist, [-1,1]) sq_dists = tf.multiply(2., tf.matmul(x_data, tf.transpose(x_data))) my_kernel = tf.exp(tf.multiply(gamma, tf.abs(sq_dists))) # Declare function to do reshape/batch multiplication # 最大的变化是批量矩阵乘法。 # 最终的结果是三维矩阵,并且需要传播矩阵乘法。 # 所以数据矩阵和目标矩阵需要预处理,比如xT·x操作需额外增加一个维度。 # 这里创建一个函数来扩展矩阵维度,然后进行矩阵转置, # 接着调用TensorFlow的tf.batch_matmul()函数 def reshape_matmul(mat): v1 = tf.expand_dims(mat, 1) v2 = tf.reshape(v1, [3, batch_size, 1]) return(tf.matmul(v2, v1)) # Compute SVM Model 计算对偶损失函数 first_term = tf.reduce_sum(b) b_vec_cross = tf.matmul(tf.transpose(b), b) y_target_cross = reshape_matmul(y_target) second_term = tf.reduce_sum(tf.multiply(my_kernel, tf.multiply(b_vec_cross, y_target_cross)),[1,2]) loss = tf.reduce_sum(tf.negative(tf.subtract(first_term, second_term))) # Gaussian (RBF) prediction kernel # 现在创建预测核函数。 # 要当心reduce_sum()函数,这里我们并不想聚合三个SVM预测, # 所以需要通过第二个参数告诉TensorFlow求和哪几个 rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1),[-1,1]) rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1),[-1,1]) pred_sq_dist = tf.add(tf.subtract(rA, tf.multiply(2., tf.matmul(x_data, tf.transpose(prediction_grid)))), tf.transpose(rB)) pred_kernel = tf.exp(tf.multiply(gamma, tf.abs(pred_sq_dist))) # 实现预测核函数后,我们创建预测函数。 # 与二类不同的是,不再对模型输出进行sign()运算。 # 因为这里实现的是一对多方法,所以预测值是分类器有最大返回值的类别。 # 使用TensorFlow的内建函数argmax()来实现该功能 prediction_output = tf.matmul(tf.multiply(y_target,b), pred_kernel) prediction = tf.arg_max(prediction_output-tf.expand_dims(tf.reduce_mean(prediction_output,1), 1), 0) accuracy = tf.reduce_mean(tf.cast(tf.equal(prediction, tf.argmax(y_target,0)), tf.float32)) # Declare optimizer my_opt = tf.train.GradientDescentOptimizer(0.01) train_step = my_opt.minimize(loss) # Initialize variables init = tf.global_variables_initializer() sess.run(init) # Training loop loss_vec = [] batch_accuracy = [] for i in range(100): rand_index = np.random.choice(len(x_vals), size=batch_size) rand_x = x_vals[rand_index] rand_y = y_vals[:,rand_index] sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y}) loss_vec.append(temp_loss) acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x, y_target: rand_y, prediction_grid:rand_x}) batch_accuracy.append(acc_temp) if (i+1)%25==0: print('Step #' + str(i+1)) print('Loss = ' + str(temp_loss)) # 创建数据点的预测网格,运行预测函数 x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1 y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02), np.arange(y_min, y_max, 0.02)) grid_points = np.c_[xx.ravel(), yy.ravel()] grid_predictions = sess.run(prediction, feed_dict={x_data: rand_x, y_target: rand_y, prediction_grid: grid_points}) grid_predictions = grid_predictions.reshape(xx.shape) # Plot points and grid plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, alpha=0.8) plt.plot(class1_x, class1_y, 'ro', label='I. setosa') plt.plot(class2_x, class2_y, 'kx', label='I. versicolor') plt.plot(class3_x, class3_y, 'gv', label='I. virginica') plt.title('Gaussian SVM Results on Iris Data') plt.xlabel('Pedal Length') plt.ylabel('Sepal Width') plt.legend(loc='lower right') plt.ylim([-0.5, 3.0]) plt.xlim([3.5, 8.5]) plt.show() # Plot batch accuracy plt.plot(batch_accuracy, 'k-', label='Accuracy') plt.title('Batch Accuracy') plt.xlabel('Generation') plt.ylabel('Accuracy') plt.legend(loc='lower right') plt.show() # Plot loss over time plt.plot(loss_vec, 'k-') plt.title('Loss per Generation') plt.xlabel('Generation') plt.ylabel('Loss') plt.show()
输出:
Instructions for updating:
Use `argmax` instead
Step #25
Loss = -313.391
Step #50
Loss = -650.891
Step #75
Loss = -988.39
Step #100
Loss = -1325.89
山鸢尾花(I.Setosa)非线性高斯SVM模型的多分类(三类)结果,其中gamma值为10
重点是改变SVM算法一次性优化三类SVM模型。模型参数b通过增加一个维度来计算三个模型。我们可以看到,使用TensorFlow内建功能可以轻松扩展算法到多类的相似算法。
相关推荐:
以上是用TensorFlow实现多类支持向量机的示例代码的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

使用windowshello中,找不到支持的摄像头,常见的原因是使用的摄像头不支持人脸识别、摄像头驱动安装不正确导致的,那么接下来让我们一起去看一下怎么去设置。windowshello找不到支持的摄像头教程:原因一:摄像头驱动安装不对1、一般来说Win10系统可以自动为大部分摄像头安装驱动程序,如下,插上摄像头之后会有通知;2、这时我们打开设备管理器看看,摄像头驱动是否安装好,没有的话就需要手动操作一下。WIN+X,然后选择设备管理器;3、设备管理器窗口中,展开照相机选项,会显示摄像头的驱动型号

安装步骤:1、下载和安装Miniconda,根据操作系统选择适合的Miniconda版本,并按照官方指南进行安装;2、使用“conda create -n tensorflow_env python=3.7”命令创建一个新的Conda环境;3、激活Conda环境;4、使用“conda install tensorflow”命令安装最新版的TensorFlow;5、验证安装即可。

PyCharm社区版支持的插件足够吗?需要具体代码示例随着Python语言在软件开发领域的应用越来越广泛,PyCharm作为一款专业的Python集成开发环境(IDE),备受开发者青睐。PyCharm分为专业版和社区版两个版本,其中社区版是免费提供的,但其插件支持相对专业版有所限制。那么问题来了,PyCharm社区版支持的插件足够吗?本文将通过具体的代码示例

开源软件的利与弊:了解开源项目的优劣势,需要具体代码示例在当今数字化时代,开源软件越来越受到关注和推崇。作为一种基于合作和分享精神的软件开发模式,开源软件在不同领域都有着广泛的应用。然而,尽管开源软件具有诸多优势,但也存在一些挑战和限制。本文将深入探讨开源软件的利与弊,并通过具体的代码示例展示开源项目的优劣势。一、开源软件的优势1.1开放性和透明性开源软件

华硕tufz790plus支持内存频率华硕TUFZ790-PLUS主板是一款高性能主板,支持双通道DDR4内存,最大支持64GB内存。它的内存频率非常强大,最高可达4800MHz。具体支持的内存频率包括2133MHz、2400MHz、2666MHz、2800MHz、3000MHz、3200MHz、3600MHz、3733MHz、3866MHz、4000MHz、4133MHz、4266MHz、4400MHz、4533MHz、4600MHz、4733MHz和4800MHz。无论是日常使用还是高性能需

如何使用Flask-Babel实现多语言支持引言:随着互联网的不断发展,多语言支持成为了大多数网站和应用的一个必要功能。Flask-Babel是一个方便易用的Flask扩展,它提供了基于Babel库的多语言支持。本文将介绍如何使用Flask-Babel来实现多语言支持,并附上代码示例。一、安装Flask-Babel在开始之前,我们需要先安装Flask-Bab

在本文中,我们将使用TensorFlow和Keras创建一个图像分类器,可以区分猫和狗的图像。为了做到这一点,我们将使用TensorFlow数据集中的cats_vs_dogs数据集。该数据集由25000张打过标签的猫和狗的图像组成,其中80%的图像用于训练,10%用于验证,10%用于测试。加载数据我们从使用TensorFlowDatasets加载数据集开始。将数据集拆分为训练集、验证集和测试集,分别占数据的80%、10%和10%,并定义一个函数来显示数据集中的一些样本图像。importtenso

有一些用户使用xp系统,想要将他们的显卡升级为gtx960,但不确定gtx960是否支持xp系统。实际上,gtx960是支持xp系统的。我们只需在官网下载适用于xp系统的驱动程序,就可以使用gtx960了。下面让我们一起来看看具体的步骤吧。gtx960支持xp系统吗:GTX960可以与XP系统兼容。只需要下载并安装驱动程序,你就可以开始使用了。首先,我们需要打开NVIDIA官网并导航到主页。然后,我们需要在页面上方找到一个标签或按钮,它可能会被标记为“驱动程序”。一旦找到了这个选项,我们需要点击
