PyTorch快速搭建神经网络及其保存提取方法详解
本篇文章主要介绍了PyTorch快速搭建神经网络及其保存提取方法详解,现在分享给大家,也给大家做个参考。一起过来看看吧
有时候我们训练了一个模型, 希望保存它下次直接使用,不需要下次再花时间去训练 ,本节我们来讲解一下PyTorch快速搭建神经网络及其保存提取方法详解
一、PyTorch快速搭建神经网络方法
先看实验代码:
import torch import torch.nn.functional as F # 方法1,通过定义一个Net类来建立神经网络 class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear(n_feature, n_hidden) self.predict = torch.nn.Linear(n_hidden, n_output) def forward(self, x): x = F.relu(self.hidden(x)) x = self.predict(x) return x net1 = Net(2, 10, 2) print('方法1:\n', net1) # 方法2 通过torch.nn.Sequential快速建立神经网络结构 net2 = torch.nn.Sequential( torch.nn.Linear(2, 10), torch.nn.ReLU(), torch.nn.Linear(10, 2), ) print('方法2:\n', net2) # 经验证,两种方法构建的神经网络功能相同,结构细节稍有不同 ''''' 方法1: Net ( (hidden): Linear (2 -> 10) (predict): Linear (10 -> 2) ) 方法2: Sequential ( (0): Linear (2 -> 10) (1): ReLU () (2): Linear (10 -> 2) ) '''
先前学习了通过定义一个Net类来构建神经网络的方法,classNet中首先通过super函数继承torch.nn.Module模块的构造方法,再通过添加属性的方式搭建神经网络各层的结构信息,在forward方法中完善神经网络各层之间的连接信息,然后再通过定义Net类对象的方式完成对神经网络结构的构建。
构建神经网络的另一个方法,也可以说是快速构建方法,就是通过torch.nn.Sequential,直接完成对神经网络的建立。
两种方法构建得到的神经网络结构完全相同,都可以通过print函数来打印输出网络信息,不过打印结果会有些许不同。
二、PyTorch的神经网络保存和提取
在学习和研究深度学习的时候,当我们通过一定时间的训练,得到了一个比较好的模型的时候,我们当然希望将这个模型及模型参数保存下来,以备后用,所以神经网络的保存和模型参数提取重载是很有必要的。
首先,我们需要在需要保存网路结构及其模型参数的神经网络的定义、训练部分之后通过torch.save()实现对网络结构和模型参数的保存。有两种保存方式:一是保存年整个神经网络的的结构信息和模型参数信息,save的对象是网络net;二是只保存神经网络的训练模型参数,save的对象是net.state_dict(),保存结果都以.pkl文件形式存储。
对应上面两种保存方式,重载方式也有两种。对应第一种完整网络结构信息,重载的时候通过torch.load(‘.pkl')直接初始化新的神经网络对象即可。对应第二种只保存模型参数信息,需要首先搭建相同的神经网络结构,通过net.load_state_dict(torch.load('.pkl'))完成模型参数的重载。在网络比较大的时候,第一种方法会花费较多的时间。
代码实现:
import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed(1) # 设定随机数种子 # 创建数据 x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) y = x.pow(2) + 0.2*torch.rand(x.size()) x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False) # 将待保存的神经网络定义在一个函数中 def save(): # 神经网络结构 net1 = torch.nn.Sequential( torch.nn.Linear(1, 10), torch.nn.ReLU(), torch.nn.Linear(10, 1), ) optimizer = torch.optim.SGD(net1.parameters(), lr=0.5) loss_function = torch.nn.MSELoss() # 训练部分 for i in range(300): prediction = net1(x) loss = loss_function(prediction, y) optimizer.zero_grad() loss.backward() optimizer.step() # 绘图部分 plt.figure(1, figsize=(10, 3)) plt.subplot(131) plt.title('net1') plt.scatter(x.data.numpy(), y.data.numpy()) plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) # 保存神经网络 torch.save(net1, '7-net.pkl') # 保存整个神经网络的结构和模型参数 torch.save(net1.state_dict(), '7-net_params.pkl') # 只保存神经网络的模型参数 # 载入整个神经网络的结构及其模型参数 def reload_net(): net2 = torch.load('7-net.pkl') prediction = net2(x) plt.subplot(132) plt.title('net2') plt.scatter(x.data.numpy(), y.data.numpy()) plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) # 只载入神经网络的模型参数,神经网络的结构需要与保存的神经网络相同的结构 def reload_params(): # 首先搭建相同的神经网络结构 net3 = torch.nn.Sequential( torch.nn.Linear(1, 10), torch.nn.ReLU(), torch.nn.Linear(10, 1), ) # 载入神经网络的模型参数 net3.load_state_dict(torch.load('7-net_params.pkl')) prediction = net3(x) plt.subplot(133) plt.title('net3') plt.scatter(x.data.numpy(), y.data.numpy()) plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) # 运行测试 save() reload_net() reload_params()
实验结果:
相关推荐:
以上是PyTorch快速搭建神经网络及其保存提取方法详解的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站10月22日消息,今年第三季度,科大讯飞实现净利润2579万元,同比下降81.86%;前三季度净利润9936万元,同比下降76.36%。科大讯飞副总裁江涛在Q3业绩说明会上透露,讯飞已于2023年初与华为升腾启动专项攻关,与华为联合研发高性能算子库,合力打造我国通用人工智能新底座,让国产大模型架构在自主创新的软硬件基础之上。他指出,目前华为升腾910B能力已经基本做到可对标英伟达A100。在即将举行的科大讯飞1024全球开发者节上,讯飞和华为在人工智能算力底座上将有进一步联合发布。他还提到,

PyCharm是一款强大的集成开发环境(IDE),而PyTorch是深度学习领域备受欢迎的开源框架。在机器学习和深度学习领域,使用PyCharm和PyTorch进行开发可以极大地提高开发效率和代码质量。本文将详细介绍如何在PyCharm中安装配置PyTorch,并附上具体的代码示例,帮助读者更好地利用这两者的强大功能。第一步:安装PyCharm和Python

如今的深度学习方法专注于设计最适合的目标函数,以使模型的预测结果与实际情况最接近。同时,必须设计一个合适的架构,以便为预测获取足够的信息。现有方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,大量信息将会丢失。本文将深入探讨数据通过深度网络传输时的重要问题,即信息瓶颈和可逆函数。基于此提出了可编程梯度信息(PGI)的概念,以应对深度网络实现多目标所需的各种变化。PGI可以为目标任务提供完整的输入信息,以计算目标函数,从而获得可靠的梯度信息以更新网络权重。此外设计了一种新的轻量级网络架

当前主流的AI芯片主要分为三类,GPU、FPGA、ASIC。GPU、FPGA均是前期较为成熟的芯片架构,属于通用型芯片。ASIC属于为AI特定场景定制的芯片。行业内已经确认CPU不适用于AI计算,但是在AI应用领域也是必不可少。 GPU方案GPU与CPU的架构对比CPU遵循的是冯·诺依曼架构,其核心是存储程序/数据、串行顺序执行。因此CPU的架构中需要大量的空间去放置存储单元(Cache)和控制单元(Control),相比之下计算单元(ALU)只占据了很小的一部分,所以CPU在进行大规模并行计算

在自然语言生成任务中,采样方法是从生成模型中获得文本输出的一种技术。这篇文章将讨论5种常用方法,并使用PyTorch进行实现。1、GreedyDecoding在贪婪解码中,生成模型根据输入序列逐个时间步地预测输出序列的单词。在每个时间步,模型会计算每个单词的条件概率分布,然后选择具有最高条件概率的单词作为当前时间步的输出。这个单词成为下一个时间步的输入,生成过程会持续直到满足某种终止条件,比如生成了指定长度的序列或者生成了特殊的结束标记。GreedyDecoding的特点是每次选择当前条件概率最

在我的世界(Minecraft)中,红石是一种非常重要的物品。它是游戏中的一种独特材料,开关、红石火把和红石块等能对导线或物体提供类似电流的能量。红石电路可以为你建造用于控制或激活其他机械的结构,其本身既可以被设计为用于响应玩家的手动激活,也可以反复输出信号或者响应非玩家引发的变化,如生物移动、物品掉落、植物生长、日夜更替等等。因此,在我的世界中,红石能够控制的机械类别极其多,小到简单机械如自动门、光开关和频闪电源,大到占地巨大的电梯、自动农场、小游戏平台甚至游戏内建的计算机。近日,B站UP主@

在详细了解去噪扩散概率模型(DDPM)的工作原理之前,我们先来了解一下生成式人工智能的一些发展情况,这也是DDPM的基础研究之一。 VAEVAE使用编码器、概率潜在空间和解码器。在训练过程中,编码器预测每个图像的均值和方差,并从高斯分布中对这些值进行采样。采样的结果传递到解码器中,解码器将输入图像转换为与输出图像相似的形式。 KL散度用于计算损失。 VAE的一个显着优势是其能够生成多样化的图像。在采样阶段,可以直接从高斯分布中采样,并通过解码器生成新的图像。 GAN在变分自编码器(VAEs)的短短一年之

PyTorch作为一款功能强大的深度学习框架,被广泛应用于各类机器学习项目中。PyCharm作为一款强大的Python集成开发环境,在实现深度学习任务时也能提供很好的支持。本文将详细介绍如何在PyCharm中安装PyTorch,并提供具体的代码示例,帮助读者快速上手使用PyTorch进行深度学习任务。第一步:安装PyCharm首先,我们需要确保已经在计算机上
