首页 后端开发 Python教程 Python 的类、继承和多态详解

Python 的类、继承和多态详解

May 02, 2018 pm 03:36 PM
python 详解

本文通过实例给大家详细解释了Python 的类、继承和多态的定义和用法,非常实用,有需要的小伙伴可以参考下

类的定义

假如要定义一个类 Point,表示二维的坐标点:

# point.py
class Point:
  def __init__(self, x=0, y=0):
    self.x, self.y = x, y
登录后复制

最最基本的就是 __init__ 方法,相当于 C++ / Java 的构造函数。带双下划线 __ 的方法都是特殊方法,除了 __init__ 还有很多,后面会有介绍。

参数 self 相当于 C++ 的 this,表示当前实例,所有方法都有这个参数,但是调用时并不需要指定。

>>> from point import *
>>> p = Point(10, 10) # __init__ 被调用
>>> type(p)
<class &#39;point.Point&#39;>
>>> p.x, p.y
(10, 10)
登录后复制

几乎所有的特殊方法(包括 __init__)都是隐式调用的(不直接调用)。

对一切皆对象的 Python 来说,类自己当然也是对象:

>>> type(Point)
<class &#39;type&#39;>
>>> dir(Point)
[&#39;__class__&#39;, &#39;__delattr__&#39;, &#39;__dict__&#39;, ..., &#39;__init__&#39;, ...]
>>> Point.__class__
<class &#39;type&#39;>
登录后复制

Point 是 type 的一个实例,这和 p 是 Point 的一个实例是一回事。

现添加方法 set:

class Point:
  ...
  def set(self, x, y):
    self.x, self.y = x, y
登录后复制

>>> p = Point(10, 10)
>>> p.set(0, 0)
>>> p.x, p.y
(0, 0)
登录后复制

p.set(...) 其实只是一个语法糖,你也可以写成 Point.set(p, ...),这样就能明显看出 p 就是 self 参数了:

>>> Point.set(p, 0, 0)
>>> p.x, p.y
(0, 0)
登录后复制

值得注意的是,self 并不是关键字,甚至可以用其它名字替代,比如 this:

class Point:
  ...
  def set(this, x, y):
    this.x, this.y = x, y
登录后复制

与 C++ 不同的是,“成员变量”必须要加 self. 前缀,否则就变成类的属性(相当于 C++ 静态成员),而不是对象的属性了。

访问控制

Python 没有 public / protected / private 这样的访问控制,如果你非要表示“私有”,习惯是加双下划线前缀。

class Point:
  def __init__(self, x=0, y=0):
    self.__x, self.__y = x, y

  def set(self, x, y):
    self.__x, self.__y = x, y

  def __f(self):
    pass
登录后复制

__x、__y 和 __f 就相当于私有了:

>>> p = Point(10, 10)
>>> p.__x
...
AttributeError: &#39;Point&#39; object has no attribute &#39;__x&#39;
>>> p.__f()
...
AttributeError: &#39;Point&#39; object has no attribute &#39;__f&#39;
登录后复制

_repr_

尝试打印 Point 实例:

>>> p = Point(10, 10)
>>> p
<point.Point object at 0x000000000272AA20>
登录后复制

通常,这并不是我们想要的输出,我们想要的是:

>>> p
Point(10, 10)
登录后复制

添加特殊方法 __repr__ 即可实现:

class Point:
  def __repr__(self):
    return &#39;Point({}, {})&#39;.format(self.__x, self.__y)
登录后复制

不难看出,交互模式在打印 p 时其实是调用了 repr(p):

>>> repr(p)
'Point(10, 10)'

_str_

如果没有提供 __str__,str() 缺省使用 repr() 的结果。
这两者都是对象的字符串形式的表示,但还是有点差别的。简单来说,repr() 的结果面向的是解释器,通常都是合法的 Python 代码,比如 Point(10, 10);而 str() 的结果面向用户,更简洁,比如 (10, 10)。

按照这个原则,我们为 Point 提供 __str__ 的定义如下:

class Point:
  def __str__(self):
    return &#39;({}, {})&#39;.format(self.__x, self.__y)
登录后复制

_add_

两个坐标点相加是个很合理的需求。

>>> p1 = Point(10, 10)
>>> p2 = Point(10, 10)
>>> p3 = p1 + p2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: &#39;Point&#39; and &#39;Point&#39;
登录后复制

添加特殊方法 __add__ 即可做到:

class Point:
  def __add__(self, other):
    return Point(self.__x + other.__x, self.__y + other.__y)
登录后复制

>>> p3 = p1 + p2
>>> p3
Point(20, 20)
登录后复制

这就像 C++ 里的操作符重载一样。
Python 的内建类型,比如字符串、列表,都“重载”了 + 操作符。

特殊方法还有很多,这里就不逐一介绍了。

继承

举一个教科书中最常见的例子。Circle 和 Rectangle 继承自 Shape,不同的图形,面积(area)计算方式不同。

# shape.py

class Shape:
  def area(self):
    return 0.0
    
class Circle(Shape):
  def __init__(self, r=0.0):
    self.r = r

  def area(self):
    return math.pi * self.r * self.r

class Rectangle(Shape):
  def __init__(self, a, b):
    self.a, self.b = a, b

  def area(self):
    return self.a * self.b
登录后复制

用法比较直接:

>>> from shape import *
>>> circle = Circle(3.0)
>>> circle.area()
28.274333882308138
>>> rectangle = Rectangle(2.0, 3.0)
>>> rectangle.area()
6.0
登录后复制

如果 Circle 没有定义自己的 area:

class Circle(Shape):
  pass
登录后复制

那么它将继承父类 Shape 的 area:

>>> Shape.area is Circle.area
True
登录后复制

一旦 Circle 定义了自己的 area,从 Shape 继承而来的那个 area 就被重写(overwrite)了:

>>> from shape import *
>>> Shape.area is Circle.area
False
登录后复制

通过类的字典更能明显地看清这一点:

>>> Shape.__dict__[&#39;area&#39;]
<function Shape.area at 0x0000000001FDB9D8>
>>> Circle.__dict__[&#39;area&#39;]
<function Circle.area at 0x0000000001FDBB70>
登录后复制

所以,子类重写父类的方法,其实只是把相同的属性名绑定到了不同的函数对象。可见 Python 是没有覆写(override)的概念的。

同理,即使 Shape 没有定义 area 也是可以的,Shape 作为“接口”,并不能得到语法的保证。

甚至可以动态的添加方法:

class Circle(Shape):
  ...
  # def area(self):
    # return math.pi * self.r * self.r

# 为 Circle 添加 area 方法。
Circle.area = lambda self: math.pi * self.r * self.r
登录后复制

动态语言一般都是这么灵活,Python 也不例外。

Python 官方教程「9. Classes」第一句就是:

Compared with other programming languages, Python's class mechanism adds classes with a minimum of new syntax and semantics.

Python 以最少的新的语法和语义实现了类机制,这一点确实让人惊叹,但是也让 C++ / Java 程序员感到颇为不适。

多态

如前所述,Python 没有覆写(override)的概念。严格来讲,Python 并不支持「多态」。

为了解决继承结构中接口和实现的问题,或者说为了更好的用 Python 面向接口编程(设计模式所提倡的),我们需要人为的设一些规范。

请考虑 Shape.area() 除了简单的返回 0.0,有没有更好的实现?

以内建模块 asyncio 为例,AbstractEventLoop 原则上是一个接口,类似于 Java 中的接口或 C++ 中的纯虚类,但是 Python 并没有语法去保证这一点,为了尽量体现 AbstractEventLoop 是一个接口,首先在名字上标志它是抽象的(Abstract),然后让每个方法都抛出异常 NotImplementedError。

class AbstractEventLoop:
  def run_forever(self):
    raise NotImplementedError
  ...
登录后复制

纵然如此,你是无法禁止用户实例化 AbstractEventLoop 的:

loop = asyncio.AbstractEventLoop()
try:
  loop.run_forever()
except NotImplementedError:
  pass
登录后复制

C++ 可以通过纯虚函数或设构造函数为 protected 来避免接口被实例化,Java 就更不用说了,接口就是接口,有完整的语法支持。

你也无法强制子类必须实现“接口”中定义的每一个方法,C++ 的纯虚函数可以强制这一点(Java 更不必说)。

就算子类「自以为」实现了“接口”中的方法,也不能保证方法的名字没有写错,C++ 的 override 关键字可以保证这一点(Java 更不必说)。

静态类型的缺失,让 Python 很难实现 C++ / Java 那样严格的多态检查机制。所以面向接口的编程,对 Python 来说,更多的要依靠程序员的素养。

回到 Shape 的例子,仿照 asyncio,我们把“接口”改成这样:

class AbstractShape:
  def area(self):
    raise NotImplementedError
登录后复制

这样,它才更像一个接口。

super

有时候,需要在子类中调用父类的方法。

比如图形都有颜色这个属性,所以不妨加一个参数 color 到 __init__:

class AbstractShape:
  def __init__(self, color):
    self.color = color
登录后复制

那么子类的 __init__() 势必也要跟着改动:

class Circle(AbstractShape):
  def __init__(self, color, r=0.0):
    super().__init__(color)
    self.r = r
登录后复制

通过 super 把 color 传给父类的 __init__()。其实不用 super 也行:

class Circle(AbstractShape):
  def __init__(self, color, r=0.0):
    AbstractShape.__init__(self, color)
    self.r = r
登录后复制

但是 super 是推荐的做法,因为它避免了硬编码,也能处理多继承的情况。

相关推荐:

Python的环境配置解析


以上是Python 的类、继承和多态详解的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:解释了不同的范例 PHP和Python:解释了不同的范例 Apr 18, 2025 am 12:26 AM

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

在PHP和Python之间进行选择:指南 在PHP和Python之间进行选择:指南 Apr 18, 2025 am 12:24 AM

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

visual studio code 可以用于 python 吗 visual studio code 可以用于 python 吗 Apr 15, 2025 pm 08:18 PM

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

vscode 扩展是否是恶意的 vscode 扩展是否是恶意的 Apr 15, 2025 pm 07:57 PM

VS Code 扩展存在恶意风险,例如隐藏恶意代码、利用漏洞、伪装成合法扩展。识别恶意扩展的方法包括:检查发布者、阅读评论、检查代码、谨慎安装。安全措施还包括:安全意识、良好习惯、定期更新和杀毒软件。

vs code 可以在 Windows 8 中运行吗 vs code 可以在 Windows 8 中运行吗 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

PHP和Python:深入了解他们的历史 PHP和Python:深入了解他们的历史 Apr 18, 2025 am 12:25 AM

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

vscode怎么在终端运行程序 vscode怎么在终端运行程序 Apr 15, 2025 pm 06:42 PM

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率

See all articles