Python 中的Selenium异常处理
这篇文章主要介绍了关于PHPPython 中的Selenium异常处理,有着一定的参考价值,现在分享给大家,有需要的朋友可以参考一下
自动化测试执行过程中,难免会有错误/异常出现,比如测试脚本没有发现对应元素,则会立刻抛出NoSuchElementException异常。这时不要怕,肯定是测试脚本或者测试环境哪里出错了!那如何处理才是关键?因为一般只是局部有问题,为了让脚本继续执行,so我们可以用try...except...raise捕获异常。该捕获异常后可以打印出相应的异常原因,这样以便于分析异常原因。
下面将举例说明,当异常抛出后将信息打印在控制台,同时截取当前浏览器窗口,作为后续bug的依据给相应开发人员更好下定位问题。代码如下:
import unittest from selenium import webdriver from selenium.common.exceptions import NoSuchElementException #导入NoSuchElementException class ExceptionTest(unittest.TestCase): def setUp(self): self.driver = webdriver.Chrome() self.driver.get("https://www.baidu.com") def test_exception(self): driver = self.driver try: search_text = driver.find_element_by_id("ss") self.assertEqual('百度一下', search_text.get_attribute("value")) except NoSuchElementException: file_name = "no_such_element.png" #driver.save_screenshot(file_name) driver.get_screenshot_as_file(file_name) raise #抛出异常,注释后则不抛出异常 def tearDown(self): self.driver.quit() if __name__ == '__main__': unittest.main(verbosity=2)
运行有异常,结果如下:
上面代码中用到WebDriver内置的捕获屏幕并保存的方法,如这里的save_screenshot(filename)方法和save_screenshot_as_file(filename)方法,在测试异常抛出时,同时截取浏览器屏幕并以自定义的图片文件名保存在指定路径(上面代码为当前路径)。
又如当一个元素呈现在DOM,但它是不可见的,不能与之进行交互,异常将抛出,以百度首页的登录为例,当元素不能不可见时,抛出ElementNotVisibleException的异常,代码如下:
import unittest from selenium import webdriver from selenium.common.exceptions import ElementNotVisibleException #导入ElementNotVisibleException class ExceptionTest(unittest.TestCase): def setUp(self): self.driver = webdriver.Chrome() self.driver.get("https://www.baidu.com") def test_exception(self): driver = self.driver try: login = driver.find_element_by_name("tj_login") login.click() except ElementNotVisibleException: raise def tearDown(self): self.driver.quit() if __name__ == '__main__': unittest.main(verbosity=2)
运行有异常,结果如下:
下面将列举selenium常见的异常:
相关推荐:
以上是Python 中的Selenium异常处理的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

在CentOS系统上高效训练PyTorch模型,需要分步骤进行,本文将提供详细指南。一、环境准备:Python及依赖项安装:CentOS系统通常预装Python,但版本可能较旧。建议使用yum或dnf安装Python3并升级pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。CUDA与cuDNN(GPU加速):如果使用NVIDIAGPU,需安装CUDATool

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

在CentOS下选择PyTorch版本时,需要考虑以下几个关键因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU并且希望利用GPU加速,需要选择支持相应CUDA版本的PyTorch。可以通过运行nvidia-smi命令查看你的显卡支持的CUDA版本。CPU版本:如果没有GPU或不想使用GPU,可以选择CPU版本的PyTorch。2.Python版本PyTorch

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。
