首页 后端开发 Python教程 python最长回文串算法

python最长回文串算法

Jun 04, 2018 pm 04:26 PM
python 最长 算法

这篇文章主要为大家详细介绍了python最长回文串算法的实践,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

给定一个字符串,要求在这个字符串中找到符合回文性质的最长子串。所谓回文性是指诸如 “aba”,"ababa","abba"这类的字符串,当然单个字符以及两个相邻相同字符也满足回文性质。

看到这个问题,最先想到的解决方法自然是暴力枚举,通过枚举字符串所有字串的起点,逐一判断满足回文性的子串,记录长度并更新最长长度。显然这种算法的时间复杂度是很高的,最坏情况可以达到O(N*N)。所以呢,这里提出一个优化的方案,通过枚举字符串子串的中心而不是起点,向两边同时扩散,依然是逐一判断子串的回文性。这种优化算法比之前的算法在最坏的情况下(即只有一种字符的字符串)效率会有很大程度的上升。

由上述的优化方案,我们知道了枚举中心要比枚举起点效率要好,然而这并不是最优的算法。由于枚举中心的算法同时影响的是中心两边的字符,所以我们可以通过枚举中心的左边字符作为中心的子串的回文性判断枚举中心右边的字符作为中心得子串的回文性,这就是manacher算法。

manacher算法思想非常巧妙,首先遍历字符串,假设 i 为枚举中心,则 j (j

1 . i 关于 j 对称的字符i'的影响范围完全包含在j的影响范围内,则由于回文性,i 的影响范围大于等于i'的影响范围,即f[i]>=f[i']

2. i 关于 j 对称的字符i'的影响范围不完全包含在j的影响范围内,此时i的右侧影响范围大于等于[j-f[j]/2,i'],即i+f[i]/2>=i'-j+f[j]/2

由于对称性,可得i+i" = 2*j。因此第一种情况下,f[i]>=f[2*j-i];第二种情况下,f[i]>=f[j]+2*j-2*i。

综上1,2,可得f[i]>=min(f[2*j-i],f[j]+2*j-2*i)。由于i右边存在未遍历的字符,因此在此基础上,继续向两边扩展,直到找到最长的回文子串。

若i依然在j+f[j]/2后面,则表示i没有被前面的字符的影响,只能逐一的向两边扩展。

这个算法由于只需遍历一遍字符串,扩展的次数也是有限的,所以时间复杂度可以达到O(N)。

下面是Pthon3的程序,为了检测算法的效率,依然提供最初的暴力枚举算法作为最坏算法的参照。

python代码:

#求最长回文串类 
class LPS:           
  #初始化,需要提供一个字符串  
  def __init__(self,string): 
    self.string = string 
    self.lens = len(self.string) 
   
  #暴力枚举:作为算法效率参照 
  def brute_force(self): 
    maxcount = 0 
    for j in range(self.lens):            
      for k in range(j,self.lens): 
        count = 0 
        l,m = j,k 
        while m>=l: 
          if self.string[l]==self.string[m]: 
            l,m = l+1,m-1 
          else: 
            break 
        if m<l: 
          count = k-j+1 
        if count>maxcount : 
          maxcount = count 
    return maxcount 
   
  #优化版:枚举子串中心 
  def brute_force_opti(self): 
    maxcount = 0 
    if self.lens == 1:               #只有一个字符直接返回1 
      return 1 
    for j in range(self.lens-1):          #枚举中心 
      count,u = 1,j  
      #对于奇数子串,直接扩展 
      for k in range(1,j+1):           #两边扩展 
        l,m = u+k,j-k 
        if (m>=0)&(l<self.lens): 
          if(self.string[l]==self.string[m]): 
            count += 2 
          else: 
            break 
      if count>maxcount :             #更新回文子串最长长度 
        maxcount = count 
      if self.string[j]==self.string[j+1]:    #处理偶数子串,将两个相邻相同元素作为整体 
        u,count= j+1,2 
      for k in range(1,j+1):           #两边扩展 
        l,m = u+k,j-k 
        if (m>=0)&(l<self.lens): 
          if(self.string[l]==self.string[m]): 
            count += 2 
          else: 
            break 
      if count>maxcount :             #更新回文子串最长长度 
        maxcount = count 
    return maxcount 
     
  #manacher算法 
  def manacher(self): 
    s = &#39;#&#39;+&#39;#&#39;.join(self.string)+&#39;#&#39;        #字符串处理,用特殊字符隔离字符串,方便处理偶数子串 
    lens = len(s) 
    f = []                     #辅助列表:f[i]表示i作中心的最长回文子串的长度 
    maxj = 0                    #记录对i右边影响最大的字符位置j 
    maxl = 0                    #记录j影响范围的右边界 
    maxd = 0                    #记录最长的回文子串长度 
    for i in range(lens):              #遍历字符串 
      if maxl>i:                  
        count = min(maxl-i,int(f[2*maxj-i]/2)+1)#这里为了方便后续计算使用count,其表示当前字符到其影响范围的右边界的距离 
      else :                    
        count = 1 
      while i-count>=0 and i+count<lens and s[i-count]==s[i+count]:#两边扩展 
        count +=1 
      if(i-1+count)>maxl:             #更新影响范围最大的字符j及其右边界 
          maxl,maxj = i-1+count,i                             
      f.append(count*2-1) 
      maxd = max(maxd,f[i])            #更新回文子串最长长度 
    return int((maxd+1)/2)-1            #去除特殊字符
登录后复制

通过上面的程序,使用字符串为长度1000的纯‘a'字符串作为样例,经过测试:

暴力枚举:49.719844s

中心枚举:0.334019s

manacher:0.008000s

由此可见,长度为1000时,暴力枚举的耗时已经无法忍受了,而相比而言,中心枚举在效率上已经有很大幅度的提升,最优的manacher耗时则为更短。

相关推荐:

python实现判断一个字符串是否是合法IP地址

Python针对给定字符串求解所有子序列是否为回文序列的方法

以上是python最长回文串算法的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

在PHP和Python之间进行选择:指南 在PHP和Python之间进行选择:指南 Apr 18, 2025 am 12:24 AM

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

PHP和Python:解释了不同的范例 PHP和Python:解释了不同的范例 Apr 18, 2025 am 12:26 AM

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

visual studio code 可以用于 python 吗 visual studio code 可以用于 python 吗 Apr 15, 2025 pm 08:18 PM

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

vs code 可以在 Windows 8 中运行吗 vs code 可以在 Windows 8 中运行吗 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

vscode 扩展是否是恶意的 vscode 扩展是否是恶意的 Apr 15, 2025 pm 07:57 PM

VS Code 扩展存在恶意风险,例如隐藏恶意代码、利用漏洞、伪装成合法扩展。识别恶意扩展的方法包括:检查发布者、阅读评论、检查代码、谨慎安装。安全措施还包括:安全意识、良好习惯、定期更新和杀毒软件。

vscode怎么在终端运行程序 vscode怎么在终端运行程序 Apr 15, 2025 pm 06:42 PM

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率

PHP和Python:深入了解他们的历史 PHP和Python:深入了解他们的历史 Apr 18, 2025 am 12:25 AM

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

See all articles