首页 > web前端 > js教程 > 正文

JS实现堆排序

不言
发布: 2018-07-07 17:50:38
原创
1873 人浏览过

这篇文章主要介绍了关于JS实现堆排序,有着一定的参考价值,现在分享给大家,有需要的朋友可以参考一下

堆的预备知识

  • 堆是一个完全二叉树。

  • 完全二叉树: 二叉树除开最后一层,其他层结点数都达到最大,最后一层的所有结点都集中在左边(左边结点排列满的情况下,右边才能缺失结点)。

  • 大顶堆:根结点为最大值,每个结点的值大于或等于其孩子结点的值。

  • 小顶堆:根结点为最小值,每个结点的值小于或等于其孩子结点的值。

  • 堆的存储: 堆由数组来实现,相当于对二叉树做层序遍历。如下图:


3942070513-5b3d8014d9ecd_articlex[1].png

2625369032-5b3d80234ce55_articlex[1].png

对于结点 i ,其子结点为 2i+1 与 2i+2 。

堆排序算法

335703288-5b3d8059a914f_articlex[1].png

现在需要对如上二叉树做升序排序,总共分为三步:

  1. 将初始二叉树转化为大顶堆(heapify),此时根结点为最大值,将其与最后一个结点交换。

  2. 除开最后一个结点,将其余节点组成的新堆转化为大顶堆,此时根结点为次最大值,将其与最后一个结点交换。

  3. 重复步骤2,直到堆中元素个数为1(或其对应数组的长度为1),排序完成。

下面详细图解这个过程:

步骤1:

初始化大顶堆,首先选取最后一个非叶子结点(我们只需要调整父节点和孩子节点之间的大小关系,叶子结点之间的大小关系无需调整)。设数组为arr,则第一个非叶子结点的下标为:i = Math.floor(arr.length/2 - 1) = 1,也就是数字4,如图中虚线框,找到三个数字的最大值,与父节点交换。

905275246-5b3d80ca1f8cf_articlex[1].png

然后,下标 i 依次减1(即从第一个非叶子结点开始,从右至左,从下至上遍历所有非叶子节点)。后面的每一次调整都是如此:找到父子结点中的最大值,做交换。

1693856705-5b3d80fe79483_articlex[1].png

这一步中数字6、1交换后,数字[1,5,4]组成的堆顺序不对,需要执行一步调整。因此需要注意,每一次对一个非叶子结点做调整后,都要观察是否会影响子堆顺序!

347386342-5b3d81326eb7c_articlex[1].png

这次调整后,根节点为最大值,形成了一个大顶堆,将根节点与最后一个结点交换。

步骤2:

除开当前最后一个结点6(即最大值),将其余结点[4,5,3,1]组成新堆转化为大顶堆(注意观察,此时根节点以外的其他结点,都满足大顶堆的特征,所以可以从根节点4开始调整,即找到4应该处于的位置即可)。


612648797-5b3d815fb686f_articlex[1].png

275482456-5b3d81831d70b_articlex[1].png

步骤3:

接下来反复执行步骤2,直到堆中元素个数为1:

2047796199-5b3d819a78a94_articlex[1].png

1677262690-5b3d81a66a490_articlex[1].png

2335279563-5b3d81a91c32a_articlex[1].png

堆中元素个数为1, 排序完成。

JavaScript实现

// 交换两个节点
function swap(A, i, j) {
  let temp = A[i];
  A[i] = A[j];
  A[j] = temp; 
}

// 将 i 结点以下的堆整理为大顶堆,注意这一步实现的基础实际上是:
// 假设 结点 i 以下的子堆已经是一个大顶堆,adjustheap 函数实现的
// 功能是实际上是:找到 结点 i 在包括结点 i 的堆中的正确位置。后面
// 将写一个 for 循环,从第一个非叶子结点开始,对每一个非叶子结点
// 都执行 adjustheap 操作,所以就满足了结点 i 以下的子堆已经是一大
//顶堆
function adjustHeap(A, i, length) {
  let temp = A[i]; // 当前父节点
// j<length 的目的是对结点 i 以下的结点全部做顺序调整
  for(let j = 2*i+1; j<length; j = 2*j+1) {
    temp = A[i];  // 将 A[i] 取出,整个过程相当于找到 A[i] 应处于的位置
    if(j+1 < length && A[j] < A[j+1]) { 
      j++;   // 找到两个孩子中较大的一个,再与父节点比较
    }
    if(temp < A[j]) {
      swap(A, i, j) // 如果父节点小于子节点:交换;否则跳出
      i = j;  // 交换后,temp 的下标变为 j
    } else {
      break;
    }
  }
}

// 堆排序
function heapSort(A) {
  // 初始化大顶堆,从第一个非叶子结点开始
  for(let i = Math.floor(A.length/2-1); i>=0; i--) {
    adjustHeap(A, i, A.length);
  }
  // 排序,每一次for循环找出一个当前最大值,数组长度减一
  for(let i = Math.floor(A.length-1); i>0; i--) {
    swap(A, 0, i); // 根节点与最后一个节点交换
    adjustHeap(A, 0, i); // 从根节点开始调整,并且最后一个结点已经为当
                         // 前最大值,不需要再参与比较,所以第三个参数
                         // 为 i,即比较到最后一个结点前一个即可
  }
}

let Arr = [4, 6, 8, 5, 9, 1, 2, 5, 3, 2];
heapSort(Arr);
alert(Arr);
登录后复制

程序注释: 将 i 结点以下的堆整理为大顶堆,注意这一步实现的基础实际上是:假设 结点 i 以下的子堆已经是一个大顶堆,adjustHeap 函数实现的功能是实际上是:找到 结点 i 在包括结点 i 的堆中的正确位置。后面做第一次堆化时,heapSort 中写了一个 for 循环,从第一个非叶子结点开始,对每一个非叶子结点都执行 adjustHeap 操作,所以就满足了每一次 adjustHeap 中,结点 i 以下的子堆已经是一大顶堆。

复杂度分析:adjustHeap 函数中相当于堆的每一层只遍历一个结点,因为
具有n个结点的完全二叉树的深度为[log2n]+1,所以 adjustHeap 的复杂度为 O(logn),而外层循环共有 f(n) 次,所以最终的复杂度为 O(nlogn)。

堆的应用

堆主要是用来实现优先队列,下面是优先队列的应用示例:

  • 操作系统动态选择优先级最高的任务执行。

  • 静态问题中,在N个元素中选出前M名,使用排序的复杂度:O(NlogN),使用优先队列的复杂度: O(NlogM)。

而实现优先队列采用普通数组、顺序数组和堆的不同复杂度如下:

3849855272-5b3d8da3ef28f_articlex[1].jpg

使用堆来实现优先队列,可以使入队和出队的复杂度都很低。

以上就是本文的全部内容,希望对大家的学习有所帮助,更多相关内容请关注PHP中文网!

相关推荐:

JS实现归并排序

JS实现希尔排序

以上是JS实现堆排序的详细内容。更多信息请关注PHP中文网其他相关文章!

相关标签:
来源:php.cn
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
作者最新文章
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板