什么是python分布式进程?(实例解析)
在这篇文章之中我们来了解一下什么是python分布式进程。了解一下python分布式进程的相关知识,以及分布式进程在python编程之中能起到什么样的作用。
在Thread和Process中,应当优选Process,因为Process更稳定,而且,Process可以分布到多台机器上,而Thread最多只能分布到同一台机器的多个CPU上。
Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个进程中,依靠网络通信。由于managers模块封装很好,不必了解网络通信的细节,就可以很容易地编写分布式多进程程序。
举个例子:如果我们已经有一个通过Queue通信的多进程程序在同一台机器上运行,现在,由于处理任务的进程任务繁重,希望把发送任务的进程和处理任务的进程分布到两台机器上。怎么用分布式进程实现?
原有的Queue可以继续使用,但是,通过managers模块把Queue通过网络暴露出去,就可以让其他机器的进程访问Queue了。
我们先看服务进程,服务进程负责启动Queue,把Queue注册到网络上,然后往Queue里面写入任务:
# task_master.py import random, time, queue from multiprocessing.managers import BaseManager # 发送任务的队列: task_queue = queue.Queue() # 接收结果的队列: result_queue = queue.Queue() # 从BaseManager继承的QueueManager: class QueueManager(BaseManager): pass # 把两个Queue都注册到网络上, callable参数关联了Queue对象: QueueManager.register('get_task_queue', callable=lambda: task_queue) QueueManager.register('get_result_queue', callable=lambda: result_queue) # 绑定端口5000, 设置验证码'abc': manager = QueueManager(address=('', 5000), authkey=b'abc') # 启动Queue: manager.start() # 获得通过网络访问的Queue对象: task = manager.get_task_queue() result = manager.get_result_queue() # 放几个任务进去: for i in range(10): n = random.randint(0, 10000) print('Put task %d...' % n) task.put(n) # 从result队列读取结果: print('Try get results...') for i in range(10): r = result.get(timeout=10) print('Result: %s' % r) # 关闭: manager.shutdown()
请注意,当我们在一台机器上写多进程程序时,创建的Queue可以直接拿来用,但是,在分布式多进程环境下,添加任务到Queue不可以直接对原始的task_queue进行操作,那样就绕过了QueueManager的封装,必须通过manager.get_task_queue()获得的Queue接口添加。
然后,在另一台机器上启动任务进程(本机上启动也可以):
# task_master.py import random, time, queue from multiprocessing.managers import BaseManager # 发送任务的队列: task_queue = queue.Queue() # 接收结果的队列: result_queue = queue.Queue() # 从BaseManager继承的QueueManager: class QueueManager(BaseManager): pass # 把两个Queue都注册到网络上, callable参数关联了Queue对象: QueueManager.register('get_task_queue', callable=lambda: task_queue) QueueManager.register('get_result_queue', callable=lambda: result_queue) # 绑定端口5000, 设置验证码'abc': manager = QueueManager(address=('', 5000), authkey=b'abc') # 启动Queue: manager.start() # 获得通过网络访问的Queue对象: task = manager.get_task_queue() result = manager.get_result_queue() # 放几个任务进去: for i in range(10): n = random.randint(0, 10000) print('Put task %d...' % n) task.put(n) # 从result队列读取结果: print('Try get results...') for i in range(10): r = result.get(timeout=10) print('Result: %s' % r) # 关闭: manager.shutdown()
任务进程要通过网络连接到服务进程,所以要指定服务进程的IP。
现在,可以试试分布式进程的工作效果了。先启动task_master.py服务进程:
$ python3 task_master.py Put task 3411... Put task 1605... Put task 1398... Put task 4729... Put task 5300... Put task 7471... Put task 68... Put task 4219... Put task 339... Put task 7866... Try get results...
task_master.py进程发送完任务后,开始等待result队列的结果。现在启动task_worker.py进程:
$ python3 task_worker.pyConnect to server 127.0.0.1... run task 3411 * 3411... run task 1605 * 1605... run task 1398 * 1398... run task 4729 * 4729... run task 5300 * 5300... run task 7471 * 7471... run task 68 * 68... run task 4219 * 4219... run task 339 * 339... run task 7866 * 7866... worker exit.
task_worker.py进程结束,在task_master.py进程中会继续打印出结果:
Result: 3411 * 3411 = 11634921 Result: 1605 * 1605 = 2576025 Result: 1398 * 1398 = 1954404 Result: 4729 * 4729 = 22363441 Result: 5300 * 5300 = 28090000 Result: 7471 * 7471 = 55815841 Result: 68 * 68 = 4624 Result: 4219 * 4219 = 17799961 Result: 339 * 339 = 114921 Result: 7866 * 7866 = 61873956
这个简单的Master/Worker模型有什么用?其实这就是一个简单但真正的分布式计算,把代码稍加改造,启动多个worker,就可以把任务分布到几台甚至几十台机器上,比如把计算n*n的代码换成发送邮件,就实现了邮件队列的异步发送。
而Queue之所以能通过网络访问,就是通过QueueManager实现的。由于QueueManager管理的不止一个Queue,所以,要给每个Queue的网络调用接口起个名字,比如get_task_queue。
authkey有什么用?这是为了保证两台机器正常通信,不被其他机器恶意干扰。如果task_worker.py的authkey和task_master.py的authkey不一致,肯定连接不上。
Python的分布式进程接口简单,封装良好,适合需要把繁重任务分布到多台机器的环境下。
注意Queue的作用是用来传递任务和接收结果,每个任务的描述数据量要尽量小。比如发送一个处理日志文件的任务,就不要发送几百兆的日志文件本身,而是发送日志文件存放的完整路径,由Worker进程再去共享的磁盘上读取文件。
以上就是本篇文章所讲述的所有内容,这篇文章主要介绍了python分布式进程的相关知识,希望你能借助资料从而理解上述所说的内容。希望我在这片文章所讲述的内容能够对你有所帮助,让你学习python更加轻松。
更多相关知识,请访问php中文网Python教程栏目。
以上是什么是python分布式进程?(实例解析)的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

在CentOS系统上高效训练PyTorch模型,需要分步骤进行,本文将提供详细指南。一、环境准备:Python及依赖项安装:CentOS系统通常预装Python,但版本可能较旧。建议使用yum或dnf安装Python3并升级pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。CUDA与cuDNN(GPU加速):如果使用NVIDIAGPU,需安装CUDATool

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

在CentOS下选择PyTorch版本时,需要考虑以下几个关键因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU并且希望利用GPU加速,需要选择支持相应CUDA版本的PyTorch。可以通过运行nvidia-smi命令查看你的显卡支持的CUDA版本。CPU版本:如果没有GPU或不想使用GPU,可以选择CPU版本的PyTorch。2.Python版本PyTorch

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所
