python中多进程的详细介绍(代码示例)
本篇文章给大家带来的内容是关于python中多进程的详细介绍(代码示例),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。
本节讲学习Python的多进程。
一、多进程和多线程比较
多进程 Multiprocessing
和多线程 threading 类似, 他们都是在 python 中用来并行
运算的. 不过既然有了 threading, 为什么 Python 还要出一个 multiprocessing 呢? 原因很简单, 就是用来弥补 threading 的一些劣势, 比如在 threading 教程中提到的GIL
.
使用 multiprocessing 也非常简单, 如果对 threading 有一定了解的朋友, 你们的享受时间就到了. 因为 python 把 multiprocessing 和 threading 的使用方法做的几乎差不多. 这样我们就更容易上手. 也更容易发挥你电脑多核系统的威力了!
二、添加进程Process
import multiprocessing as mp import threading as td def job(a,d): print('aaaaa') t1 = td.Thread(target=job,args=(1,2)) p1 = mp.Process(target=job,args=(1,2)) t1.start() p1.start() t1.join() p1.join()
从上面的使用对比代码可以看出,线程和进程的使用方法相似。
使用
在运用时需要添加上一个定义main函数的语句
if __name__=='__main__':
完整的应用代码:
# -*- coding:utf-8 -*- """ @author: Corwien @file: process_test.py @time: 18/8/26 01:12 """ import multiprocessing as mp def job(a, d): print a, d if __name__ == '__main__': p1 = mp.Process(target=job, args=(1, 2)) p1.start() p1.join()
运行环境要在terminal环境下,可能其他的编辑工具会出现运行结束后没有打印结果,在terminal中的运行后打印的结果为:
➜ baseLearn python ./process/process_test.py 1 2 ➜ baseLearn
三、存储进程输出Queue
Queue的功能是将每个核或线程的运算结果放在队里中, 等到每个线程或核运行完毕后再从队列中取出结果, 继续加载运算。原因很简单, 多线程调用的函数不能有返回值, 所以使用Queue存储多个线程运算的结果
process_queue.py
# -*- coding:utf-8 -*- """ @author: Corwien @file: process_queue.py @time: 18/8/26 01:12 """ import multiprocessing as mp # 定义一个被多线程调用的函数,q 就像一个队列,用来保存每次函数运行的结果 def job(q): res = 0 for i in range(1000): res += i + i**2 + i**3 q.put(res) #queue if __name__ == '__main__': q = mp.Queue() p1 = mp.Process(target=job, args=(q,)) p2 = mp.Process(target=job, args=(q,)) # 分别启动、连接两个线程 p1.start() p2.start() p1.join() p2.join() # 上面是分两批处理的,所以这里分两批输出,将结果分别保存 res1 = q.get() res2 = q.get() print res1,res2
打印输出结果:
➜ python ./process/process_queue.py 249833583000 249833583000
四、进程池
进程池
就是我们将所要运行的东西,放到池子里,Python会自行解决多进程的问题
。
1、导入多进程模块
首先import multiprocessing
和定义job()
import multiprocessing as mp def job(x): return x*x
2、进程池Pool()和map()
然后我们定义一个Pool
pool = mp.Pool()
有了池子之后,就可以让池子对应某一个函数,我们向池子里丢数据,池子就会返回函数返回的值。 Pool
和之前的Process的
不同点是丢向Pool的函数有返回值,而Process
的没有返回值。
接下来用map()
获取结果,在map()
中需要放入函数和需要迭代运算的值,然后它会自动分配给CPU核,返回结果
res = pool.map(job, range(10))
让我们来运行一下
def multicore(): pool = mp.Pool() res = pool.map(job, range(10)) print(res) if __name__ == '__main__': multicore()
完成代码:
# -*- coding:utf-8 -*- """ @author: Corwien @file: process_queue.py @time: 18/8/26 01:12 """ import multiprocessing as mp def job(x): return x*x # 注意这里的函数有return返回值 def multicore(): pool = mp.Pool() res = pool.map(job, range(10)) print(res) if __name__ == '__main__': multicore()
执行结果:
➜ baseLearn python ./process/process_pool.py [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
3、自定义核数量
我们怎么知道Pool
是否真的调用了多个核呢?我们可以把迭代次数增大些,然后打开CPU负载看下CPU运行情况
打开CPU负载(Mac):活动监视器 > CPU > CPU负载(单击一下即可)
Pool默认大小是CPU的核数,我们也可以通过在Pool
中传入processes
参数即可自定义需要的核数量
def multicore(): pool = mp.Pool(processes=3) # 定义CPU核数量为3 res = pool.map(job, range(10)) print(res)
4、apply_async()
Pool
除了map()
外,还有可以返回结果的方式,那就是apply_async()
.
apply_async()
中只能传递一个值,它只会放入一个核进行运算,但是传入值时要注意是可迭代的,所以在传入值后需要加逗号, 同时需要用get()方法获取返回值
def multicore(): pool = mp.Pool() res = pool.map(job, range(10)) print(res) res = pool.apply_async(job, (2,)) # 用get获得结果 print(res.get())
运行结果;
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81] # map() 4 # apply_async()
总结
Pool
默认调用是CPU的核数,传入processes参数可自定义CPU核数map()
放入迭代参数,返回多个结果apply_async()
只能放入一组参数,并返回一个结果,如果想得到map()的效果需要通过迭代
五、共享内存shared memory
这节我们学习如何定义共享内存。只有用共享内存才能让CPU之间有交流
。
Shared Value
我们可以通过使用Value
数据存储在一个共享的内存表中。
import multiprocessing as mp value1 = mp.Value('i', 0) value2 = mp.Value('d', 3.14)
其中d
和i
参数用来设置数据类型的,d
表示一个双精浮点类型 double,i
表示一个带符号的整型
。
Type code | C Type | Python Type | Minimum size in bytes |
---|---|---|---|
'b' |
signed char | int | 1 |
'B' |
unsigned char | int | 1 |
'u' |
Py_UNICODE | Unicode character | 2 |
'h' |
signed short | int | 2 |
'H' |
unsigned short | int | 2 |
'i' |
signed int | int | 2 |
'I' |
unsigned int | int | 2 |
'l' |
signed long | int | 4 |
'L' |
unsigned long | int | 4 |
'q' |
signed long long | int | 8 |
'Q' |
unsigned long long | int | 8 |
'f' |
float | float | 4 |
'd' |
double | float | 8 |
Shared Array
在Python的 mutiprocessing
中,有还有一个Array
类,可以和共享内存交互,来实现在进程之间共享数据。
array = mp.Array('i', [1, 2, 3, 4])
这里的Array
和numpy中的不同,它只能是一维
的,不能是多维的。同样和Value
一样,需要定义数据形式,否则会报错。 我们会在后一节举例说明这两种的使用方法.
错误形式
array = mp.Array('i', [[1, 2], [3, 4]]) # 2维list """ TypeError: an integer is required """
六、进程锁Lock
不加进程锁
让我们看看没有加进程锁时会产生什么样的结果。
# -*- coding:utf-8 -*- """ @author: Corwien @file: process_no_lock.py @time: 18/8/26 09:22 """ import multiprocessing as mp import time def job(v, num): for _ in range(5): time.sleep(0.5) # 暂停0.5秒,让输出效果更明显 v.value += num # v.value获取共享变量值 print(v.value) def multicore(): v = mp.Value('i', 0) # 定义共享变量 p1 = mp.Process(target=job, args=(v, 1)) p2 = mp.Process(target=job, args=(v, 4)) # 设定不同的number看如何抢夺内存 p1.start() p2.start() p1.join() p2.join() if __name__ == '__main__': multicore()
在上面的代码中,我们定义了一个共享变量v
,两个进程都可以对它进行操作。 在job()中我们想让v
每隔0.1秒输出一次累加num
的结果,但是在两个进程p1
和p2
中设定了不同的累加值。所以接下来让我们来看下这两个进程是否会出现冲突。
结果打印:
➜ baseLearn python ./process/process_no_lock.py 1 5 9 9 13 13 17 17 18 18 ➜ baseLearn
我们可以看到,进程1和进程2在相互抢
着使用共享内存v
。
加进程锁
为了解决上述不同进程抢共享资源的问题,我们可以用加进程锁来解决。
首先需要定义一个进程锁
l = mp.Lock() # 定义一个进程锁
然后将进程锁的信息传入各个进程中
p1 = mp.Process(target=job, args=(v,1,l)) # 需要将Lock传入 p2 = mp.Process(target=job, args=(v,3,l))
在job()
中设置进程锁的使用,保证运行时一个进程的对锁内内容的独占
def job(v, num, l): l.acquire() # 锁住 for _ in range(5): time.sleep(0.1) v.value += num # v.value获取共享内存 print(v.value) l.release() # 释放
全部代码:
# -*- coding:utf-8 -*- """ @author: Corwien @file: process_lock.py @time: 18/8/26 09:22 """ import multiprocessing as mp import time def job(v, num, l): l.acquire() # 锁住 for _ in range(5): time.sleep(0.5) # 暂停0.5秒,让输出效果更明显 v.value += num # v.value获取共享变量值 print(v.value) l.release() # 释放 def multicore(): l = mp.Lock() # 定义一个进程锁 v = mp.Value('i', 0) # 定义共享变量 p1 = mp.Process(target=job, args=(v, 1, l)) # 需要将lock传入 p2 = mp.Process(target=job, args=(v, 4, l)) # 设定不同的number看如何抢夺内存 p1.start() p2.start() p1.join() p2.join() if __name__ == '__main__': multicore()
运行一下,让我们看看是否还会出现抢占资源的情况:
结果打印:
➜ baseLearn python ./process/process_lock.py 1 2 3 4 5 9 13 17 21 25
显然,进程锁保证了进程p1
的完整运行,然后才进行了进程p2
的运行
相关推荐:
以上是python中多进程的详细介绍(代码示例)的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

在CentOS系统上安装PyTorch,需要仔细选择合适的版本,并考虑以下几个关键因素:一、系统环境兼容性:操作系统:建议使用CentOS7或更高版本。CUDA与cuDNN:PyTorch版本与CUDA版本密切相关。例如,PyTorch1.9.0需要CUDA11.1,而PyTorch2.0.1则需要CUDA11.3。cuDNN版本也必须与CUDA版本匹配。选择PyTorch版本前,务必确认已安装兼容的CUDA和cuDNN版本。Python版本:PyTorch官方支

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。
